메뉴 건너뛰기




Volumn 30, Issue 10, 2006, Pages 811-822

Short-term load forecast using trend information and process reconstruction

Author keywords

Artificial neural networks; Consumption trend; Distribution systems; Load forecasting; Measure; Memory range

Indexed keywords

ALGORITHMS; ELECTRIC INDUSTRY; ELECTRIC LOAD FORECASTING; ENERGY UTILIZATION; MATHEMATICAL MODELS; NEURAL NETWORKS; RANDOM PROCESSES;

EID: 33746803244     PISSN: 0363907X     EISSN: 1099114X     Source Type: Journal    
DOI: 10.1002/er.1187     Document Type: Article
Times cited : (20)

References (15)
  • 1
    • 0142228351 scopus 로고    scopus 로고
    • Short-term load forecasting based on Kalman filtering algorithm with moving window weather and load model
    • Al-Hamadi H, Soliman S. 2004. Short-term load forecasting based on Kalman filtering algorithm with moving window weather and load model. EPSR - Eleciric Power Systems Research 68:47-59.
    • (2004) EPSR - Eleciric Power Systems Research , vol.68 , pp. 47-59
    • Al-Hamadi, H.1    Soliman, S.2
  • 2
    • 0031999110 scopus 로고    scopus 로고
    • Relative entropy and identification of Gibbs measures in dynamical systems
    • Chazottes J, Floriani E, Lima R. 1998. Relative entropy and identification of Gibbs measures in dynamical systems. Journal of Statistical Physics 90(3/4):697-725.
    • (1998) Journal of Statistical Physics , vol.90 , Issue.3-4 , pp. 697-725
    • Chazottes, J.1    Floriani, E.2    Lima, R.3
  • 3
    • 0030204989 scopus 로고    scopus 로고
    • The application of artificial neural networks to substation load forecasting
    • Chen C, Tzeng Y, Hawang J. 1996. The application of artificial neural networks to substation load forecasting. Electric Power Systems Research 38:153-160.
    • (1996) Electric Power Systems Research , vol.38 , pp. 153-160
    • Chen, C.1    Tzeng, Y.2    Hawang, J.3
  • 4
    • 33746781938 scopus 로고    scopus 로고
    • International editions, Statistics and Probability Series. McGraw-Hill: Singapore
    • De Lurgio S. 1998. Forecasting Principles and Applications. International editions, Statistics and Probability Series. McGraw-Hill: Singapore; 36-58.
    • (1998) Forecasting Principles and Applications , pp. 36-58
    • De Lurgio, S.1
  • 5
    • 0032204310 scopus 로고    scopus 로고
    • Input variable selection for ANN-based short-term load forecasting
    • Drezga I, Rhaman S. 1998. Input variable selection for ANN-based short-term load forecasting. IEEE Transactions on Power Systems 13(4):1238-1244.
    • (1998) IEEE Transactions on Power Systems , vol.13 , Issue.4 , pp. 1238-1244
    • Drezga, I.1    Rhaman, S.2
  • 7
    • 0023563676 scopus 로고
    • Short term load forecasting
    • Gross G, Galiana F. 1987. Short term load forecasting. IEEE Proceedings 75(12):1558-1573.
    • (1987) IEEE Proceedings , vol.75 , Issue.12 , pp. 1558-1573
    • Gross, G.1    Galiana, F.2
  • 8
    • 0035248045 scopus 로고    scopus 로고
    • Neural networks for short-term load forecasting: A review and evaluation
    • Hippert H, Pereira C, Souza R. 2001. Neural networks for short-term load forecasting: a review and evaluation. IEEE Transactions on Power Systems 16(1):44-55.
    • (2001) IEEE Transactions on Power Systems , vol.16 , Issue.1 , pp. 44-55
    • Hippert, H.1    Pereira, C.2    Souza, R.3
  • 11
    • 0028548319 scopus 로고
    • An implementation of a neural network based load forecasting model for the EMS
    • Papalexopoulos A, Hao S, Peng T-M. 1994. An implementation of a neural network based load forecasting model for the EMS. IEEE Transactions on Power Systems 9(4):1956-1962.
    • (1994) IEEE Transactions on Power Systems , vol.9 , Issue.4 , pp. 1956-1962
    • Papalexopoulos, A.1    Hao, S.2    Peng, T.-M.3
  • 13
    • 0344950345 scopus 로고    scopus 로고
    • On the use of reactive power as an endogenous variable in short-term load forecasting
    • Santos P, Martins A, Pires A. 2003. On the use of reactive power as an endogenous variable in short-term load forecasting. IJER International Journal of Energy Research 27(5):513-529.
    • (2003) IJER International Journal of Energy Research , vol.27 , Issue.5 , pp. 513-529
    • Santos, P.1    Martins, A.2    Pires, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.