메뉴 건너뛰기




Volumn 197, Issue 1, 2006, Pages 89-121

A modified Milstein scheme for approximation of stochastic delay differential equations with constant time lag

Author keywords

Asymptotic optimality; Exact error formulas; Minimal errors; Pathwise approximation; Stochastic delay differential equations

Indexed keywords

ALGORITHMS; ASYMPTOTIC STABILITY; DELAY CONTROL SYSTEMS; DIFFERENTIAL EQUATIONS; ERROR ANALYSIS; INTERPOLATION; STOCHASTIC CONTROL SYSTEMS;

EID: 33746789080     PISSN: 03770427     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cam.2005.10.027     Document Type: Article
Times cited : (27)

References (21)
  • 1
    • 0012329392 scopus 로고    scopus 로고
    • Numerical analysis of explicit one-step methods for stochastic delay differential equations
    • (electronic)
    • Baker C.T.H., and Buckwar E. Numerical analysis of explicit one-step methods for stochastic delay differential equations. LMS J. Comput. Math. 3 (2000) 315-335 (electronic)
    • (2000) LMS J. Comput. Math. , vol.3 , pp. 315-335
    • Baker, C.T.H.1    Buckwar, E.2
  • 3
    • 33746839819 scopus 로고    scopus 로고
    • N. Hofmann, T. Müller-Gronbach, An optimal algorithm for strong approximation of scalar SDDE's with constant delay based on equidistant Brownian evaluation, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg, 2004, preprint 04-22.
  • 4
    • 0035294723 scopus 로고    scopus 로고
    • The optimal discretization of stochastic differential equations
    • Hofmann N., Müller-Gronbach T., and Ritter K. The optimal discretization of stochastic differential equations. J. Complexity 17 (2001) 117-153
    • (2001) J. Complexity , vol.17 , pp. 117-153
    • Hofmann, N.1    Müller-Gronbach, T.2    Ritter, K.3
  • 5
    • 33746842853 scopus 로고    scopus 로고
    • Y. Hu, S.-E.A. Mohammed, F. Yan, Numerical solution of stochastic differential systems with memory, Department of Mathematics, Southern Illinois University, Carbondale, 2001, preprint.
  • 6
    • 2142818234 scopus 로고    scopus 로고
    • Discrete-time approximation of stochastic delay equations: the Milstein scheme
    • Hu Y., Mohammed S.-E.A., and Yan F. Discrete-time approximation of stochastic delay equations: the Milstein scheme. Ann. Probab. 32 1A (2004) 265-314
    • (2004) Ann. Probab. , vol.32 , Issue.1 A , pp. 265-314
    • Hu, Y.1    Mohammed, S.-E.A.2    Yan, F.3
  • 8
    • 0346425000 scopus 로고    scopus 로고
    • Strong discrete time approximation of stochastic differential equations with time delay
    • Küchler U., and Platen E. Strong discrete time approximation of stochastic differential equations with time delay. Math. Comput. Simulation 54 (2000) 189-205
    • (2000) Math. Comput. Simulation , vol.54 , pp. 189-205
    • Küchler, U.1    Platen, E.2
  • 9
    • 3042628715 scopus 로고    scopus 로고
    • Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation
    • Liu M., Cao W., and Fan Z. Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation. J. Comput. Appl. Math. 170 (2004) 255-268
    • (2004) J. Comput. Appl. Math. , vol.170 , pp. 255-268
    • Liu, M.1    Cao, W.2    Fan, Z.3
  • 12
    • 33746808307 scopus 로고    scopus 로고
    • S.-E.A. Mohammed, Stochastic Functional Differential Equations, Research Notes in Mathematics, vol. 99, Pitman, London, 1984.
  • 13
    • 33746848675 scopus 로고    scopus 로고
    • S.-E.A. Mohammed, Stochastic differential systems with memory: theory, examples and applications, in: L. Decreusefond, J. Gjerde, B. Oksendal, A.S. Ustunel (Eds.), Stochastic Analysis and Related Topics VI. The Geilo Workshop, 1996, Progress in Probability, Birkhäuser, Basel, 1998.
  • 15
    • 26844485169 scopus 로고    scopus 로고
    • Optimal pointwise approximation of SDE's based on Brownian motion at discrete points
    • Müller-Gronbach T. Optimal pointwise approximation of SDE's based on Brownian motion at discrete points. Ann. Appl. Probab. 14 4 (2004) 1605-1642
    • (2004) Ann. Appl. Probab. , vol.14 , Issue.4 , pp. 1605-1642
    • Müller-Gronbach, T.1
  • 16
    • 85011454437 scopus 로고    scopus 로고
    • An introduction to numerical methods for stochastic differential equations
    • Platen E. An introduction to numerical methods for stochastic differential equations. Acta Numer. 8 (1999) 195-244
    • (1999) Acta Numer. , vol.8 , pp. 195-244
    • Platen, E.1
  • 17
    • 0042608558 scopus 로고    scopus 로고
    • Numerical analysis of SDEs without tears
    • Kannan D., and Lakshmikantham V. (Eds), Marcel Dekker, Basel
    • Schurz H. Numerical analysis of SDEs without tears. In: Kannan D., and Lakshmikantham V. (Eds). Handbook of Stochastic Analysis and Applications (2002), Marcel Dekker, Basel
    • (2002) Handbook of Stochastic Analysis and Applications
    • Schurz, H.1
  • 18
    • 33746834231 scopus 로고    scopus 로고
    • D. Talay, Simulation of stochastic differential systems, in: P. Krée, W. Wedig (Eds.), Probabilistic Methods in Applied Physics, Lecture Notes in Physics, vol. 451, Springer, Berlin, 1995.
  • 19
    • 10644251806 scopus 로고
    • Approximation schemes for stochastic equations with hereditary argument
    • Tudor M. Approximation schemes for stochastic equations with hereditary argument. Stud. Cerc. Mat. 44 (1992) 73-85
    • (1992) Stud. Cerc. Mat. , vol.44 , pp. 73-85
    • Tudor, M.1
  • 20
    • 0009583715 scopus 로고
    • On approximation of solutions for stochastic delay equations
    • Tudor C., and Tudor M. On approximation of solutions for stochastic delay equations. Stud. Cerc. Mat. 39 (1987) 265-274
    • (1987) Stud. Cerc. Mat. , vol.39 , pp. 265-274
    • Tudor, C.1    Tudor, M.2
  • 21
    • 33746789551 scopus 로고    scopus 로고
    • I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer, Berlin, 1991.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.