-
1
-
-
0033243771
-
The initial boundary value problem for Einstein's vacuum field equations
-
Friedrich H and Nagy G 1999 The initial boundary value problem for Einstein's vacuum field equations Commun. Math. Phys. 201 619-55
-
(1999)
Commun. Math. Phys.
, vol.201
, Issue.3
, pp. 619-655
-
-
Friedrich, H.1
Nagy, G.2
-
2
-
-
84967712846
-
Symmetric positive systems with boundary characteristics of constant multiplicity
-
Rauch J 1985 Symmetric positive systems with boundary characteristics of constant multiplicity Trans. Am. Math. Soc. 291 167-87
-
(1985)
Trans. Am. Math. Soc.
, vol.291
, Issue.1
, pp. 167-187
-
-
Rauch, J.1
-
3
-
-
0009445873
-
The initial boundary value problem for linear symmetric hyperbolic systems with characteristic boundary of constant multiplicity
-
Secchi P 1996 The initial boundary value problem for linear symmetric hyperbolic systems with characteristic boundary of constant multiplicity Diff. Int. Eqns. 9 671-700
-
(1996)
Diff. Int. Eqns.
, vol.9
, pp. 671-700
-
-
Secchi, P.1
-
4
-
-
0030489957
-
Well-posedness of characteristic symmetric hyperbolic systems
-
Secchi P 1996 Well-posedness of characteristic symmetric hyperbolic systems Arch. Ration. Mech. Anal. 134 155-97
-
(1996)
Arch. Ration. Mech. Anal.
, vol.134
, Issue.2
, pp. 155-197
-
-
Secchi, P.1
-
5
-
-
84859697031
-
Boundary conditions in linearized harmonic gravity
-
Szilagyi B, Schmidt B G and Winicour J 2002 Boundary conditions in linearized harmonic gravity Phys. Rev. D 65 064015(1)-064015(15)
-
(2002)
Phys. Rev.
, vol.65
, pp. 0640151-06401515
-
-
Szilagyi, B.1
Schmidt, B.G.2
Winicour, J.3
-
6
-
-
0141656473
-
Well-posed initial-boundary evolution in general relativity
-
Szilagyi B and Winicour J 2003 Well-posed initial-boundary evolution in general relativity Phys. Rev. D 68 041501(1)-041501(5)
-
(2003)
Phys. Rev.
, vol.68
, pp. 0415011-0415015
-
-
Szilagyi, B.1
Winicour, J.2
-
7
-
-
33644960507
-
Harmonic initial-boundary evolution in general relativity
-
Babiuc M C, Szilagyi B and Winicour J 2006 Harmonic initial-boundary evolution in general relativity Phys. Rev. D 73 064017(1)-064017(23)
-
(2006)
Phys. Rev.
, vol.73
, pp. 0640171-06401723
-
-
Babiuc, M.C.1
Szilagyi, B.2
Winicour, J.3
-
8
-
-
0242556830
-
Well posed constraint-preserving boundary conditions for the linearized Einstein equations
-
Calabrese G, Pullin J, Reula O, Sarbach O and Tiglio M 2003 Well posed constraint-preserving boundary conditions for the linearized Einstein equations Commun. Math. Phys. 240 377-95
-
(2003)
Commun. Math. Phys.
, vol.240
, Issue.1-2
, pp. 377-395
-
-
Calabrese, G.1
Pullin, J.2
Reula, O.3
Sarbach, O.4
Tiglio, M.5
-
9
-
-
42749106781
-
Symmetric hyperbolic and consistent boundary conditions for second order Einstein equations
-
Gundlach C and Martín-García J M 2004 Symmetric hyperbolic and consistent boundary conditions for second order Einstein equations Phys. Rev. D 70 044032(1)-044032(16)
-
(2004)
Phys. Rev.
, vol.70
, pp. 0440321-04403216
-
-
Gundlach, C.1
Martín-García, J.M.2
-
10
-
-
33746630066
-
-
Tarfulea N 2005 Constraint preserving boundary conditions for hyperbolic formulations of Einstein's equations PhD Thesis University of Minnesota Preprint gr-qc/0508014
-
(2005)
PhD Thesis
-
-
Tarfulea, N.1
-
11
-
-
0041173547
-
The Cauchy problem and the initial boundary value problem in numerical relativity
-
Stewart J M 1998 The Cauchy problem and the initial boundary value problem in numerical relativity Class. Quantum Grav. 15 2865-89
-
(1998)
Class. Quantum Grav.
, vol.15
, Issue.9
, pp. 2865-2889
-
-
Stewart, J.M.1
-
12
-
-
0242473132
-
Detecting ill posed boundary conditions in general relativity
-
Calabrese G and Sarbach O 2003 Detecting ill posed boundary conditions in general relativity J. Math. Phys. 44 3888-99
-
(2003)
J. Math. Phys.
, vol.44
, Issue.9
, pp. 3888-3899
-
-
Calabrese, G.1
Sarbach, O.2
-
13
-
-
33746291149
-
Boundary conditions for Einstein's field equations: Mathematical and numerical analysis
-
Sarbach O and Tiglio M 2005 Boundary conditions for Einstein's field equations: mathematical and numerical analysis J. Hyperbolic Differ. Eqns 2 839-83
-
(2005)
J. Hyperbolic Differ. Eqns
, vol.2
, Issue.4
, pp. 839-883
-
-
Sarbach, O.1
Tiglio, M.2
-
14
-
-
33746636265
-
-
Rinne O 2005 Axisymmetric numerical relativity PhD Thesis University of Cambridge Preprint gr-qc/0601064
-
(2005)
PhD Thesis
-
-
Rinne, O.1
-
15
-
-
85038308182
-
Constraint-preserving boundary conditions in numerical relativity
-
Calabrese G, Lehner L and Tiglio M 2002 Constraint-preserving boundary conditions in numerical relativity Phys. Rev. D 65 104031(1)-104031(13)
-
(2002)
Phys. Rev.
, vol.65
, pp. 1040311-10403113
-
-
Calabrese, G.1
Lehner, L.2
Tiglio, M.3
-
16
-
-
0037087885
-
Numerical tests of evolution systems, gauge conditions, and boundary conditions for 1d colliding gravitational plane waves
-
Bardeen J M and Buchman L T 2002 Numerical tests of evolution systems, gauge conditions, and boundary conditions for 1d colliding gravitational plane waves Phys. Rev. D 65 064037(1)-064037(23)
-
(2002)
Phys. Rev.
, vol.65
, pp. 0640371-06403723
-
-
Bardeen, J.M.1
Buchman, L.T.2
-
17
-
-
18544371967
-
Boundary conditions for the Einstein evolution system
-
Kidder L E, Lindblom L, Scheel M A, Buchman L and Pfeiffer H P 2005 Boundary conditions for the Einstein evolution system Phys. Rev. D 71 064020(1)-064020(22)
-
(2005)
Phys. Rev.
, vol.71
, pp. 0640201-06402022
-
-
Kidder, L.E.1
Lindblom, L.2
Scheel, M.A.3
Buchman, L.4
Pfeiffer, H.P.5
-
18
-
-
29044433386
-
-
Calabrese G 2003 Constraint preserving boundary conditions for the linearized Einstein equations PhD Thesis Louisiana State University http://etd.lsu.edu/docs/available/etd-1105103-100340
-
(2003)
PhD Thesis
-
-
Calabrese, G.1
-
19
-
-
21344434805
-
Constraint-preserving boundary conditions in the Z4 numerical relativity formalism
-
Bona C, Ledvinka T, Palenzuela-Luque C and Zacek M 2005 Constraint-preserving boundary conditions in the Z4 numerical relativity formalism Class. Quantum Grav. 22 2615-34
-
(2005)
Class. Quantum Grav.
, vol.22
, Issue.13
, pp. 2615-2634
-
-
Bona, C.1
Ledvinka, T.2
Palenzuela-Luque, C.3
Zacek, M.4
-
21
-
-
31144475179
-
A model problem for the initial-boundary value formulation of Einstein's field equations
-
Reula O and Sarbach O 2005 A model problem for the initial-boundary value formulation of Einstein's field equations J. Hyperbolic Differ. Eqns 2 397-435
-
(2005)
J. Hyperbolic Differ. Eqns
, vol.2
, Issue.2
, pp. 397-435
-
-
Reula, O.1
Sarbach, O.2
-
22
-
-
0003084235
-
Kinematics and dynamics of general relativity
-
York J W 1979 Kinematics and dynamics of general relativity Sources of Gravitational Radiation ed L L Smarr (Cambridge: Cambridge University Press) pp 83-126
-
(1979)
Sources of Gravitational Radiation
, pp. 83-126
-
-
York, J.W.1
-
26
-
-
0037104493
-
Convergence and stability in numerical relativity
-
Calabrese G, Pullin J, Sarbach O and Tiglio M 2002 Convergence and stability in numerical relativity Phys. Rev. D 66 041501(1)-041501(4)
-
(2002)
Phys. Rev.
, vol.66
, pp. 0415011-0415014
-
-
Calabrese, G.1
Pullin, J.2
Sarbach, O.3
Tiglio, M.4
-
29
-
-
0000571384
-
Note on the propagation of the constraints in standard 3+1 general relativity
-
Frittelli S 1997 Note on the propagation of the constraints in standard 3+1 general relativity Phys. Rev. D 55 5992-6
-
(1997)
Phys. Rev.
, vol.55
, Issue.10
, pp. 5992-5996
-
-
Frittelli, S.1
-
30
-
-
0141545051
-
Einstein boundary conditions for the 3+1 Einstein equations
-
Frittelli S and Gomez R 2003 Einstein boundary conditions for the 3+1 Einstein equations Phys. Rev. D 68 044014(1)-044014(6)
-
(2003)
Phys. Rev.
, vol.68
, pp. 0440141-0440146
-
-
Frittelli, S.1
Gomez, R.2
-
31
-
-
42749104417
-
A new geometric invariant on initial data for the Einstein equations
-
Dain S 2004 A new geometric invariant on initial data for the Einstein equations Phys. Rev. Lett. 93 231101
-
(2004)
Phys. Rev. Lett.
, vol.93
-
-
Dain, S.1
-
32
-
-
29744432655
-
Geometrically motivated hyperbolic coordinate conditions for numerical relativity: Analysis, issues and implementations
-
Bona C, Lehner L and Palenzuela-Luque C 2005 Geometrically motivated hyperbolic coordinate conditions for numerical relativity: analysis, issues and implementations Phys. Rev. D 72 104009(1)-104009(15)
-
(2005)
Phys. Rev.
, vol.72
, pp. 1040091-10400915
-
-
Bona, C.1
Lehner, L.2
Palenzuela-Luque, C.3
-
37
-
-
0003203437
-
Pseudodifferential operators and nonlinear PDE
-
Taylor M E 1991 Pseudodifferential operators and nonlinear PDE Progress in Mathematics vol 100 (Boston, MA: Birkhäuser) (second printing 1993)
-
(1991)
Progress in Mathematics Vol 100
-
-
Taylor, M.E.1
-
38
-
-
2342423048
-
Some mathematical questions connected with first and second order time-dependent systems of partial differential equations
-
Kreiss H O and Ortiz O E 2002 Some mathematical questions connected with first and second order time-dependent systems of partial differential equations Lect. Notes Phys. 604 359-70
-
(2002)
Lect. Notes Phys.
, vol.604
, pp. 359-370
-
-
Kreiss, H.O.1
Ortiz, O.E.2
-
39
-
-
42749105439
-
Strongly hyperbolic second order Einstein's evolution equations
-
Nagy G, Ortiz O E and Reula O A 2004 Strongly hyperbolic second order Einstein's evolution equations Phys. Rev. D 70 044012(1)-044012(15)
-
(2004)
Phys. Rev.
, vol.70
, pp. 0440121-04401215
-
-
Nagy, G.1
Ortiz, O.E.2
Reula, O.A.3
-
40
-
-
0037272911
-
Elliptic-hyperbolic systems and the Einstein equations
-
Andersson L and Moncrief V 2003 Elliptic-hyperbolic systems and the Einstein equations Ann. Henri Poincaré 4 1-34
-
(2003)
Ann. Henri Poincaré
, vol.4
, Issue.1
, pp. 1-34
-
-
Andersson, L.1
Moncrief, V.2
-
41
-
-
3643104175
-
First-order symmetric-hyperbolic Einstein equations with arbitrary fixed gauge
-
Frittelli S and Reula O A 1996 First-order symmetric-hyperbolic Einstein equations with arbitrary fixed gauge Phys. Rev. Lett. 76 4667-70
-
(1996)
Phys. Rev. Lett.
, vol.76
, Issue.25
, pp. 4667-4670
-
-
Frittelli, S.1
Reula, O.A.2
-
42
-
-
0000838828
-
Fixing Einstein's equations
-
Anderson A and York J W 1999 Fixing Einstein's equations Phys. Rev. Lett. 82 4384-7
-
(1999)
Phys. Rev. Lett.
, vol.82
, Issue.22
, pp. 4384-4387
-
-
Anderson, A.1
York, J.W.2
|