메뉴 건너뛰기




Volumn 2, Issue 2, 2005, Pages 397-435

A MODEL PROBLEM FOR THE INITIAL-BOUNDARY VALUE FORMULATION OF EINSTEIN'S FIELD EQUATIONS

Author keywords

initial boundary value formulation; Maxwell equations; well posedness

Indexed keywords


EID: 31144475179     PISSN: 02198916     EISSN: 17936993     Source Type: Journal    
DOI: 10.1142/S0219891605000488     Document Type: Article
Times cited : (18)

References (35)
  • 1
    • 0000838828 scopus 로고    scopus 로고
    • Fixing Einstein’s equations
    • A. Anderson and J. W. York, Fixing Einstein’s equations, Phys. Rev. Lett. 82 (1999) 4384–4387.
    • (1999) Phys. Rev. Lett , vol.82 , pp. 4384-4387
    • Anderson, A.1    York, J. W.2
  • 2
    • 33746776164 scopus 로고    scopus 로고
    • The null-timelike boundary problem for Maxwell’s equations in Minkowski space
    • R. Balean and R. Bartnik, The null-timelike boundary problem for Maxwell’s equations in Minkowski space, Proc. Roy. Soc. Lond. A454 (1998) 2041–2057.
    • (1998) Proc. Roy. Soc. Lond , vol.A454 , pp. 2041-2057
    • Balean, R.1    Bartnik, R.2
  • 3
    • 0037087885 scopus 로고    scopus 로고
    • Numerical tests of evolution systems, gauge conditions, and boundary conditions for 1D colliding gravitational plane waves
    • J. M. Bardeen and L. T. Buchman, Numerical tests of evolution systems, gauge conditions, and boundary conditions for 1D colliding gravitational plane waves, Phys. Rev. D65 (2002) 064037.
    • (2002) Phys. Rev , vol.D65 , pp. 064037
    • Bardeen, J. M.1    Buchman, L. T.2
  • 4
    • 85038270496 scopus 로고    scopus 로고
    • On the numerical integration of Einstein’s field equations
    • T. W. Baumgarte and S. L. Shapiro, On the numerical integration of Einstein’s field equations, Phys. Rev. D59 (1999) 024007.
    • (1999) Phys. Rev , vol.D59 , pp. 024007
    • Baumgarte, T. W.1    Shapiro, S. L.2
  • 6
    • 42749104755 scopus 로고    scopus 로고
    • On the well posedness of the Baumgarte–Shapiro–Shibata–Nakamura formulation of Einstein’s field equations
    • H. Beyer and O. Sarbach, On the well posedness of the Baumgarte–Shapiro–Shibata–Nakamura formulation of Einstein’s field equations, Phys. Rev. D70 (2004) 104004.
    • (2004) Phys. Rev , vol.D70 , pp. 104004
    • Beyer, H.1    Sarbach, O.2
  • 7
    • 4644264495 scopus 로고    scopus 로고
    • A remedy for constraint growth in numerical relativity
    • G. Calabrese, A remedy for constraint growth in numerical relativity, Class. Quant. Grav. 21 (2004) 4025–4040.
    • (2004) Class. Quant. Grav , vol.21 , pp. 4025-4040
    • Calabrese, G.1
  • 8
    • 85038308182 scopus 로고    scopus 로고
    • Constraint-preserving boundary conditions in numerical relativity
    • G. Calabrese, L. Lehner and M. Tiglio, Constraint-preserving boundary conditions in numerical relativity, Phys. Rev. D65 (2002) 104031.
    • (2002) Phys. Rev , vol.D65 , pp. 104031
    • Calabrese, G.1    Lehner, L.2    Tiglio, M.3
  • 9
    • 0242556830 scopus 로고    scopus 로고
    • Well posed constraint-preserving boundary conditions for the linearized Einstein equations
    • G. Calabrese, J. Pullin, O. Reula, O. Sarbach and M. Tiglio, Well posed constraint-preserving boundary conditions for the linearized Einstein equations, Comm. Math. Phys. 240 (2003) 377–395.
    • (2003) Comm. Math. Phys , vol.240 , pp. 377-395
    • Calabrese, G.1    Pullin, J.2    Reula, O.3    Sarbach, O.4    Tiglio, M.5
  • 10
    • 0242473132 scopus 로고    scopus 로고
    • Detecting ill posed boundary conditions in general relativity
    • G. Calabrese and O. Sarbach, Detecting ill posed boundary conditions in general relativity, J. Math. Phys. 44 (2003) 3888–3899.
    • (2003) J. Math. Phys , vol.44 , pp. 3888-3899
    • Calabrese, G.1    Sarbach, O.2
  • 11
    • 84966208271 scopus 로고
    • Absorbing boundary conditions for the numerical simulation of waves
    • B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comp. 31 (1977) 629–651.
    • (1977) Math. Comp , vol.31 , pp. 629-651
    • Engquist, B.1    Majda, A.2
  • 12
    • 1642358085 scopus 로고    scopus 로고
    • Toward making the constraint hypersurface an attractor in free evolution
    • D. R. Fiske, Toward making the constraint hypersurface an attractor in free evolution, Phys. Rev. D69 (2004) 047501.
    • (2004) Phys. Rev , vol.D69 , pp. 047501
    • Fiske, D. R.1
  • 13
    • 0033243771 scopus 로고    scopus 로고
    • The initial boundary value problem for Einstein’s vacuum field equations
    • H. Friedrich and G. Nagy, The initial boundary value problem for Einstein’s vacuum field equations, Comm. Math. Phys. 201 (1999) 619–655.
    • (1999) Comm. Math. Phys , vol.201 , pp. 619-655
    • Friedrich, H.1    Nagy, G.2
  • 14
    • 0242298612 scopus 로고    scopus 로고
    • Boundary conditions for hyperbolic formulations of the Einstein equations
    • Einstein boundary conditions for the 3+1 Einstein equations, Phys. Rev. D68 (2003) 044014; Einstein boundary conditions in relation to constraint propagation for the initial-boundary value problem of the Einstein equations, Phys. Rev. D69 (2004) 124020; Einstein boundary conditions for the Einstein equations in the conformal-traceless decomposition, Phys. Rev. D70 (2004) 064008
    • S. Frittelli and R. Gomez, Boundary conditions for hyperbolic formulations of the Einstein equations, Class. Quant. Grav. 20 (2003) 2379–2392; Einstein boundary conditions for the 3+1 Einstein equations, Phys. Rev. D68 (2003) 044014; Einstein boundary conditions in relation to constraint propagation for the initial-boundary value problem of the Einstein equations, Phys. Rev. D69 (2004) 124020; Einstein boundary conditions for the Einstein equations in the conformal-traceless decomposition, Phys. Rev. D70 (2004) 064008.
    • (2003) Class. Quant. Grav , vol.20 , pp. 2379-2392
    • Frittelli, S.1    Gomez, R.2
  • 15
    • 3643104175 scopus 로고    scopus 로고
    • First-order symmetric-hyperbolic Einstein equations with arbitrary fixed gauge
    • S. Frittelli and O. A. Reula, First-order symmetric-hyperbolic Einstein equations with arbitrary fixed gauge, Phys. Rev. Lett. 76 (1996) 4667–4670.
    • (1996) Phys. Rev. Lett , vol.76 , pp. 4667-4670
    • Frittelli, S.1    Reula, O. A.2
  • 16
    • 37649028660 scopus 로고    scopus 로고
    • Symmetric hyperbolic form of systems of second-order evolution equations subject to constraints
    • C. Gundlach and J. M. Martín-García, Symmetric hyperbolic form of systems of second-order evolution equations subject to constraints, Phys. Rev. D70 (2004) 044031.
    • (2004) Phys. Rev , vol.D70 , pp. 044031
    • Gundlach, C.1    Martín-García, J. M.2
  • 17
    • 42749106781 scopus 로고    scopus 로고
    • Symmetric hyperbolicity and consistent boundary conditions for second-order Einstein equations
    • C. Gundlach and J. M. Martín-García, Symmetric hyperbolicity and consistent boundary conditions for second-order Einstein equations, Phys. Rev. D70 (2004) 044032.
    • (2004) Phys. Rev , vol.D70 , pp. 044032
    • Gundlach, C.1    Martín-García, J. M.2
  • 19
    • 85189356534 scopus 로고    scopus 로고
    • Ph.D. thesis, University of Cambridge, gr-qc/0004036
    • S. D. Hern, Ph.D. thesis, University of Cambridge, 1999, gr-qc/0004036.
    • (1999)
    • Hern, S. D.1
  • 20
    • 85038272624 scopus 로고    scopus 로고
    • Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations
    • L. E. Kidder, M. A. Scheel and S. A. Teukolsky, Extending the lifetime of 3D black hole computations with a new hyperbolic system of evolution equations, Phys. Rev. D64 (2001) 064017.
    • (2001) Phys. Rev , vol.D64 , pp. 064017
    • Kidder, L. E.1    Scheel, M. A.2    Teukolsky, S. A.3
  • 21
    • 0037088039 scopus 로고    scopus 로고
    • Illustrating stability properties of numerical relativity in electrodynamics
    • A. M. Knapp, E. J. Walker and T. W. Baumgarte, Illustrating stability properties of numerical relativity in electrodynamics, Phys. Rev. D65 (2002) 064031.
    • (2002) Phys. Rev , vol.D65 , pp. 064031
    • Knapp, A. M.1    Walker, E. J.2    Baumgarte, T. W.3
  • 22
    • 84980172444 scopus 로고
    • Initial boundary value problems for hyperbolic systems
    • H. O. Kreiss, Initial boundary value problems for hyperbolic systems, Commun. Pure Appl. Math. 23 (1970) 277–298.
    • (1970) Commun. Pure Appl. Math , vol.23 , pp. 277-298
    • Kreiss, H. O.1
  • 25
    • 42749105439 scopus 로고    scopus 로고
    • Strongly hyperbolic second order Einstein’s evolution equations
    • G. Nagy, O. E. Ortiz and O. A. Reula, Strongly hyperbolic second order Einstein’s evolution equations, Phys. Rev. D70 (2004) 044012.
    • (2004) Phys. Rev , vol.D70 , pp. 044012
    • Nagy, G.1    Ortiz, O. E.2    Reula, O. A.3
  • 28
    • 4744357416 scopus 로고    scopus 로고
    • Hyperbolicity of the Baumgarte–Shapiro–Shibata–Nakamura system of Einstein evolution equations
    • O. Sarbach, G. Calabrese, J. Pullin and M. Tiglio, Hyperbolicity of the Baumgarte–Shapiro–Shibata–Nakamura system of Einstein evolution equations, Phys. Rev. D66 (2002) 064002.
    • (2002) Phys. Rev , vol.D66 , pp. 064002
    • Sarbach, O.1    Calabrese, G.2    Pullin, J.3    Tiglio, M.4
  • 29
    • 0000831661 scopus 로고
    • Evolution of three-dimensional gravitational waves: Harmonic slicing case
    • M. Shibata and T. Nakamura, Evolution of three-dimensional gravitational waves: Harmonic slicing case, Phys. Rev. D52 (1995) 5428–5444.
    • (1995) Phys. Rev , vol.D52 , pp. 5428-5444
    • Shibata, M.1    Nakamura, T.2
  • 30
    • 0041173547 scopus 로고    scopus 로고
    • The Cauchy problem and the initial boundary value problem in numerical relativity
    • J. M. Stewart, The Cauchy problem and the initial boundary value problem in numerical relativity, Class. Quantum Grav. 15 (1998) 2865–2889.
    • (1998) Class. Quantum Grav , vol.15 , pp. 2865-2889
    • Stewart, J. M.1
  • 31
    • 84859697031 scopus 로고    scopus 로고
    • Boundary conditions in linearized harmonic gravity
    • B. Szilagyi, B. G. Schmidt and J. Winicour, Boundary conditions in linearized harmonic gravity, Phys. Rev. D65 (2002) 064015.
    • (2002) Phys. Rev , vol.D65 , pp. 064015
    • Szilagyi, B.1    Schmidt, B. G.2    Winicour, J.3
  • 32
    • 0141656473 scopus 로고    scopus 로고
    • Well-posed initial-boundary evolution in general relativity
    • B. Szilagyi and J. Winicour, Well-posed initial-boundary evolution in general relativity, Phys. Rev. D68 (2003) 041501.
    • (2003) Phys. Rev , vol.D68 , pp. 041501
    • Szilagyi, B.1    Winicour, J.2
  • 33
    • 0039176352 scopus 로고    scopus 로고
    • Nonlinear semigroups and the Yang–Mills equations with the metallic boundary conditions
    • J. Tafel and J. Sniatycki, Nonlinear semigroups and the Yang–Mills equations with the metallic boundary conditions, Commun. Partial Differ. Equations 22 (1997) 49–69.
    • (1997) Commun. Partial Differ. Equations , vol.22 , pp. 49-69
    • Tafel, J.1    Sniatycki, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.