-
1
-
-
80053264999
-
How biased is the apparent error rate of a prediction rule?
-
Efron, B. (1986). How biased is the apparent error rate of a prediction rule? J. Amer. Statist. Assoc. 81, 461-470.
-
(1986)
J. Amer. Statist. Assoc.
, vol.81
, pp. 461-470
-
-
Efron, B.1
-
2
-
-
3242708140
-
Least angle regression
-
Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle regression. Ann. Statist. 32, 407-499.
-
(2004)
Ann. Statist.
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
3
-
-
84925605946
-
The entire regularization path for the support vector machine
-
Hastie, T., Rosset, S., Tibshirani, R. and Zhu, J. (2004). The entire regularization path for the support vector machine. J. Mach. Learn. Res. 5, 1391-1415.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1391-1415
-
-
Hastie, T.1
Rosset, S.2
Tibshirani, R.3
Zhu, J.4
-
4
-
-
0036505670
-
A comparison of methods for multi-class support vector machines
-
Hsu, C.-W. and Lin, C.-J. (2002). A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Networks 13, 415-425.
-
(2002)
IEEE Trans. Neural Networks
, vol.13
, pp. 415-425
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
5
-
-
0002714543
-
Making large-scale SVM learning practical
-
(Edited by B. Schölkopf, C. Burges and A. Smola). MIT Press
-
Joachims, T. (1999). Making large-scale SVM learning practical. In Advances in Kernel Methods Support Vector Learning (Edited by B. Schölkopf, C. Burges and A. Smola). MIT Press.
-
(1999)
Advances in Kernel Methods Support Vector Learning
-
-
Joachims, T.1
-
6
-
-
23244440127
-
Structured multicategory support vector machine with ANOVA decomposition
-
Department of Statistics, The Ohio State University
-
Lee, Y., Kim, Y., Lee, S. and Koo, J.-Y. (2004). Structured Multicategory Support Vector Machine with ANOVA decomposition. Technical Report 743, Department of Statistics, The Ohio State University.
-
(2004)
Technical Report
, vol.743
-
-
Lee, Y.1
Kim, Y.2
Lee, S.3
Koo, J.-Y.4
-
7
-
-
2142775432
-
Multicategory Support Vector Machines, theory, and application to the classification of microarray data and satellite radiance data
-
Lee, Y., Lin, Y. and Wahba, G. (2004). Multicategory Support Vector Machines, theory, and application to the classification of microarray data and satellite radiance data. J. Amer. Statist. Assoc. 99, 67-81.
-
(2004)
J. Amer. Statist. Assoc.
, vol.99
, pp. 67-81
-
-
Lee, Y.1
Lin, Y.2
Wahba, G.3
-
8
-
-
0003775298
-
-
Classics in Applied Mathematics. SIAM, Philadelphia
-
Mangasarian, O. (1994). Nonlinear Programming. Classics in Applied Mathematics, Vol. 10. SIAM, Philadelphia.
-
(1994)
Nonlinear Programming
, vol.10
-
-
Mangasarian, O.1
-
9
-
-
0003120218
-
Sequential minimal optimization: A fast algorithm for training support vector machines
-
Edited by B. Schölkopf, C. J. C. Burges and A. J. Smola. MIT Press
-
Platt, J. (1999). Sequential minimal optimization: A fast algorithm for training support vector machines. In Advances in Kernel Methods: Support Vector Learning (Edited by B. Schölkopf, C. J. C. Burges and A. J. Smola), 185-208. MIT Press.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
11
-
-
0003466536
-
-
Series in Applied Mathematics. SIAM, Philadelphia
-
Wahba, G. (1990). Spline Models for Observational Data. Series in Applied Mathematics, Vol. 59. SIAM, Philadelphia.
-
(1990)
Spline Models for Observational Data
, vol.59
-
-
Wahba, G.1
|