메뉴 건너뛰기




Volumn 16, Issue 2, 2006, Pages 391-409

Characterizing the solution path of multicategory support vector machines

Author keywords

Classification; Coefficient paths; Karush Kuhn Tucker condition; Multicategory support vector machine

Indexed keywords


EID: 33746111966     PISSN: 10170405     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (14)

References (12)
  • 1
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule?
    • Efron, B. (1986). How biased is the apparent error rate of a prediction rule? J. Amer. Statist. Assoc. 81, 461-470.
    • (1986) J. Amer. Statist. Assoc. , vol.81 , pp. 461-470
    • Efron, B.1
  • 3
    • 84925605946 scopus 로고    scopus 로고
    • The entire regularization path for the support vector machine
    • Hastie, T., Rosset, S., Tibshirani, R. and Zhu, J. (2004). The entire regularization path for the support vector machine. J. Mach. Learn. Res. 5, 1391-1415.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1391-1415
    • Hastie, T.1    Rosset, S.2    Tibshirani, R.3    Zhu, J.4
  • 4
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • Hsu, C.-W. and Lin, C.-J. (2002). A comparison of methods for multi-class support vector machines. IEEE Trans. Neural Networks 13, 415-425.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 5
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • (Edited by B. Schölkopf, C. Burges and A. Smola). MIT Press
    • Joachims, T. (1999). Making large-scale SVM learning practical. In Advances in Kernel Methods Support Vector Learning (Edited by B. Schölkopf, C. Burges and A. Smola). MIT Press.
    • (1999) Advances in Kernel Methods Support Vector Learning
    • Joachims, T.1
  • 6
    • 23244440127 scopus 로고    scopus 로고
    • Structured multicategory support vector machine with ANOVA decomposition
    • Department of Statistics, The Ohio State University
    • Lee, Y., Kim, Y., Lee, S. and Koo, J.-Y. (2004). Structured Multicategory Support Vector Machine with ANOVA decomposition. Technical Report 743, Department of Statistics, The Ohio State University.
    • (2004) Technical Report , vol.743
    • Lee, Y.1    Kim, Y.2    Lee, S.3    Koo, J.-Y.4
  • 7
    • 2142775432 scopus 로고    scopus 로고
    • Multicategory Support Vector Machines, theory, and application to the classification of microarray data and satellite radiance data
    • Lee, Y., Lin, Y. and Wahba, G. (2004). Multicategory Support Vector Machines, theory, and application to the classification of microarray data and satellite radiance data. J. Amer. Statist. Assoc. 99, 67-81.
    • (2004) J. Amer. Statist. Assoc. , vol.99 , pp. 67-81
    • Lee, Y.1    Lin, Y.2    Wahba, G.3
  • 8
    • 0003775298 scopus 로고
    • Classics in Applied Mathematics. SIAM, Philadelphia
    • Mangasarian, O. (1994). Nonlinear Programming. Classics in Applied Mathematics, Vol. 10. SIAM, Philadelphia.
    • (1994) Nonlinear Programming , vol.10
    • Mangasarian, O.1
  • 9
    • 0003120218 scopus 로고    scopus 로고
    • Sequential minimal optimization: A fast algorithm for training support vector machines
    • Edited by B. Schölkopf, C. J. C. Burges and A. J. Smola. MIT Press
    • Platt, J. (1999). Sequential minimal optimization: A fast algorithm for training support vector machines. In Advances in Kernel Methods: Support Vector Learning (Edited by B. Schölkopf, C. J. C. Burges and A. J. Smola), 185-208. MIT Press.
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 11
    • 0003466536 scopus 로고
    • Series in Applied Mathematics. SIAM, Philadelphia
    • Wahba, G. (1990). Spline Models for Observational Data. Series in Applied Mathematics, Vol. 59. SIAM, Philadelphia.
    • (1990) Spline Models for Observational Data , vol.59
    • Wahba, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.