-
1
-
-
0004234640
-
Interpolation spaces, anintroduction
-
Springer, Berlin-Heiderberg-New York
-
J. Bergh and J. Löfström, Interpolation spaces, An introduction. Grundlehren Math. Wiss. Vol. 223, Springer, Berlin-Heiderberg-New York, 1976.
-
(1976)
Grundlehren Math. Wiss.
, vol.223
-
-
Bergh, J.1
Löfström, J.2
-
2
-
-
2442530451
-
Vortex rings for the Gross-Pitaevakii equation
-
F. Bethuel, G. Orlandi, and D. Smets, Vortex rings for the Gross-Pitaevakii equation. J. Euro. Math. Soc. 6 (2004), no. 1, 17-94.
-
(2004)
J. Euro. Math. Soc.
, vol.6
, Issue.1
, pp. 17-94
-
-
Bethuel, F.1
Orlandi, G.2
Smets, D.3
-
3
-
-
0037836463
-
Travelling waves for the Gross-Pitaevskii equation. I
-
F. Bethuel and J. C. Saut, Travelling waves for the Gross-Pitaevskii equation. I. Ann. Inst. H. Poincaré Phys. Théor, 70 (1999), no. 2, 147-238.
-
(1999)
Ann. Inst. H. Poincaré Phys. Théor
, vol.70
, Issue.2
, pp. 147-238
-
-
Bethuel, F.1
Saut, J.C.2
-
4
-
-
3042636806
-
Travelling waves for the Gross-Pitaevskii equation in dimension larger than two
-
D. Chiron, Travelling waves for the Gross-Pitaevskii equation in dimension larger than two. Nonlinear Anal. 58 (2004), no. 1-2, 175-204.
-
(2004)
Nonlinear Anal.
, vol.58
, Issue.1-2
, pp. 175-204
-
-
Chiron, D.1
-
6
-
-
0000455566
-
Vortex dynamics for the Ginzburg-Landau-Schrödinger equation
-
J. E. Colliander and R. L. Jerrard, Vortex dynamics for the Ginzburg-Landau-Schrödinger equation. Internat. Math. Res. Notices 1908, no. 7, 333-358;
-
Internat. Math. Res. Notices
, vol.1908
, Issue.7
, pp. 333-358
-
-
Colliander, J.E.1
Jerrard, R.L.2
-
7
-
-
0033475315
-
Ginzburg-Landau vortices: Weak stability and Schrödinger equation dynamics
-
and Ginzburg-Landau vortices: weak stability and Schrödinger equation dynamics. J. Anal. Math. 77 (1999), 129-205.
-
(1999)
J. Anal. Math.
, vol.77
, pp. 129-205
-
-
-
9
-
-
0001632973
-
Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension n ≥ 2
-
J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension n ≥ 2. Comm. Math. Phys. 151 (1993), no. 3, 619-645.
-
(1993)
Comm. Math. Phys.
, vol.151
, Issue.3
, pp. 619-645
-
-
Ginibre, J.1
Ozawa, T.2
-
10
-
-
0001232403
-
On the existence of the wave operators for a class of nonlinear Schrödinger equations
-
J. Ginibre, T. Ozawa, and G. Velo, On the existence of the wave operators for a class of nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 60 (1994), no. 2, 211-239.
-
(1994)
Ann. Inst. H. Poincaré Phys. Théor.
, vol.60
, Issue.2
, pp. 211-239
-
-
Ginibre, J.1
Ozawa, T.2
Velo, G.3
-
11
-
-
0000555922
-
Scattering theory in the energy space for a class of nonlinear Schrödinger equations
-
J. Ginibre and G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations. J. Math. Pures Appl. (9) 64 (1985), no. 4, 363-401.
-
(1985)
J. Math. Pures Appl. (9)
, vol.64
, Issue.4
, pp. 363-401
-
-
Ginibre, J.1
Velo, G.2
-
12
-
-
0038106196
-
Limit at infinity for travelling waves in the Gross-Pitaevskii equation
-
P. Gravejat, Limit at infinity for travelling waves in the Gross-Pitaevskii equation. C. R. Math. Acad. Sci. Paris 336 (2003), no. 2, 147-152;
-
(2003)
C. R. Math. Acad. Sci. Paris
, vol.336
, Issue.2
, pp. 147-152
-
-
Gravejat, P.1
-
13
-
-
0344983000
-
A non-existence result for supersonic travelling waves in the Gross-Pitaevskii equation
-
and A non-existence result for supersonic travelling waves in the Gross-Pitaevskii equation. Comm. Math. Phys. 243 (2003), no. 1, 93-103.
-
(2003)
Comm. Math. Phys.
, vol.243
, Issue.1
, pp. 93-103
-
-
-
14
-
-
0041471561
-
Dynamic stability of magnetic vortices
-
S. Gustafson, Dynamic stability of magnetic vortices. Nonlinearity 15 (2002), no. 5, 1717-1728.
-
(2002)
Nonlinearity
, vol.15
, Issue.5
, pp. 1717-1728
-
-
Gustafson, S.1
-
15
-
-
33746144028
-
Effective dynamics of magnetic vortices
-
To appear
-
S. Gustafson, I.M. Sigal, Effective dynamics of magnetic vortices. To appear in Adv. Math. (2005).
-
(2005)
Adv. Math.
-
-
Gustafson, S.1
Sigal, I.M.2
-
16
-
-
3042559074
-
Time decay of small solutions to quadratic nonlinear Schrödinger equations in 3D
-
N. Hayashi, T. Mizumachi and P. I. Naumkin, Time decay of small solutions to quadratic nonlinear Schrödinger equations in 3D. Differential Integral Equations 16 (2003), no. 2, 159-179.
-
(2003)
Differential Integral Equations
, vol.16
, Issue.2
, pp. 159-179
-
-
Hayashi, N.1
Mizumachi, T.2
Naumkin, P.I.3
-
17
-
-
3042687625
-
Modified wave operators for nonlinear Schrödinger equations in one and two dimensions
-
N. Hayashi, P. I. Naumkin, A. Shimomura and S. Tonegawa, Modified wave operators for nonlinear Schrödinger equations in one and two dimensions. Electron. J. Differential Equations 2004, No. 62, 16 pp.
-
Electron. J. Differential Equations
, vol.2004
, Issue.62
-
-
Hayashi, N.1
Naumkin, P.I.2
Shimomura, A.3
Tonegawa, S.4
-
18
-
-
0002411380
-
Vortex dynamics for the Ginzburg-Landau wave equation
-
R. Jerrard, Vortex dynamics for the Ginzburg-Landau wave equation. Calc. Var. Partial Diff. Eqns. 9 (1999), no.8, 683-688.
-
(1999)
Calc. Var. Partial Diff. Eqns.
, vol.9
, Issue.8
, pp. 683-688
-
-
Jerrard, R.1
-
19
-
-
27644480881
-
Vortex filament dynamics for Gross-Pitaevsky type equations
-
_, Vortex filament dynamics for Gross-Pitaevsky type equations. Ann. Sc. Norm. Super. Pisa Cl. Sci. 1 (2002), no. 4, 733-768.
-
(2002)
Ann. Sc. Norm. Super. Pisa Cl. Sci.
, vol.1
, Issue.4
, pp. 733-768
-
-
-
20
-
-
0001423717
-
Motions in a Bose condensate: Stability of solitary wave solutions of non-linear Schrödinger equations in two and three dimensions
-
C.A. Jones, S.J. Putterman, P.H. Roberts, Motions in a Bose condensate: stability of solitary wave solutions of non-linear Schrödinger equations in two and three dimensions. J. Phys. A: Math. Gen. 19 (1986), 2991-3011.
-
(1986)
J. Phys. A: Math. Gen.
, vol.19
, pp. 2991-3011
-
-
Jones, C.A.1
Putterman, S.J.2
Roberts, P.H.3
-
21
-
-
0001138601
-
Endpoint Strichartz estimates
-
M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no.5, 955-980.
-
(1998)
Amer. J. Math.
, vol.120
, Issue.5
, pp. 955-980
-
-
Keel, M.1
Tao, T.2
-
22
-
-
0042473258
-
Unstable manifolds and Schrödinger dynamics of Ginzburg-Landau vortices
-
O. Lange and B. J. Schroers, Unstable manifolds and Schrödinger dynamics of Ginzburg-Landau vortices, Nonlinearity 15 (2002), no. 5, 1471-1488.
-
(2002)
Nonlinearity
, vol.15
, Issue.5
, pp. 1471-1488
-
-
Lange, O.1
Schroers, B.J.2
-
23
-
-
0033458658
-
Vortex dynamics for the nonlinear wave equation
-
F.-H. Lin, Vortex dynamics for the nonlinear wave equation, Comm. Pure Appl. Math. 52 (1999), no.6, 737-429.
-
(1999)
Comm. Pure Appl. Math.
, vol.52
, Issue.6
, pp. 737-1429
-
-
Lin, F.-H.1
-
24
-
-
0033248349
-
On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation
-
F. H. Lin and J. X. Xin, On the incompressible fluid limit and the vortex motion law of the nonlinear Schrödinger equation, Comm. Math. Phys. 200 (1999), no. 2, 249-274.
-
(1999)
Comm. Math. Phys.
, vol.200
, Issue.2
, pp. 249-274
-
-
Lin, F.H.1
Xin, J.X.2
-
25
-
-
0005195990
-
Long-time behaviour of Ginzburg-Landau vortices
-
Y. N. Ovchinnikov and I. M. Sigal, Long-time behaviour of Ginzburg-Landau vortices. Nonlinearity 11 (1998), no. 5, 1295-1309.
-
(1998)
Nonlinearity
, vol.11
, Issue.5
, pp. 1295-1309
-
-
Ovchinnikov, Y.N.1
Sigal, I.M.2
-
26
-
-
0001366166
-
Long range scattering for nonlinear Schrödinger equations in one space dimension
-
T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Comm. Math. Phys. 139 (1991), no. 3, 479-493.
-
(1991)
Comm. Math. Phys.
, vol.139
, Issue.3
, pp. 479-493
-
-
Ozawa, T.1
-
28
-
-
25144509610
-
Nonexistence of asymptotically free solutions for quadratic nonlinear Schrödinger equations in two space dimensions
-
A. Shimomura, Nonexistence of asymptotically free solutions for quadratic nonlinear Schrödinger equations in two space dimensions. Differential Integral Equations 18 (2005), no. 3, 325-335.
-
(2005)
Differential Integral Equations
, vol.18
, Issue.3
, pp. 325-335
-
-
Shimomura, A.1
-
29
-
-
0242511184
-
Vortex motion law for the Schrödinger-Ginzburg-Landau equations
-
D. Spirn, Vortex motion law for the Schrödinger-Ginzburg-Landau equations, SIAM J. Math. Anal. 34 (2003), no. 6, 1435-1476.
-
(2003)
SIAM J. Math. Anal.
, vol.34
, Issue.6
, pp. 1435-1476
-
-
Spirn, D.1
-
30
-
-
84964744325
-
Stability of constant equilibrium for the Maxwell-Higgs equations
-
Y. Tsutsumi, Stability of constant equilibrium for the Maxwell-Higgs equations, Funkcial. Ekvac. 46 (2003), no. 1, 41-62.
-
(2003)
Funkcial. Ekvac.
, vol.46
, Issue.1
, pp. 41-62
-
-
Tsutsumi, Y.1
|