메뉴 건너뛰기




Volumn 2004, Issue , 2004, Pages 1-16

Modified wave operators for nonlinear Schrödinger equations in one and two dimensions

Author keywords

Modified wave operators; Nonlinear Schr dinger equations

Indexed keywords


EID: 3042687625     PISSN: 10726691     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (42)

References (14)
  • 1
    • 0001240303 scopus 로고
    • Nonexistence of asymptotically free solutions for nonlinear Schrödinger equations
    • J.E. Barab, Nonexistence of asymptotically free solutions for nonlinear Schrödinger equations, J. Math. Phys. 25 (1984), 3270-3273.
    • (1984) J. Math. Phys. , vol.25 , pp. 3270-3273
    • Barab, J.E.1
  • 2
    • 0001632973 scopus 로고
    • Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension n ≥ 2
    • J. Ginibre and T. Ozawa, Long range scattering for nonlinear Schrödinger and Hartree equations in space dimension n ≥ 2 , Comm. Math. Phys. 151 (1993), 619-645.
    • (1993) Comm. Math. Phys. , vol.151 , pp. 619-645
    • Ginibre, J.1    Ozawa, T.2
  • 3
    • 0001232403 scopus 로고
    • On existence of the wave operators for a class of nonlinear Schrödinger equations
    • J. Ginibre, T. Ozawa and G. Velo, On existence of the wave operators for a class of nonlinear Schrödinger equations, Ann. Inst. H. Poincaré, Physique Théorique 60 (1994), 211-239.
    • (1994) Ann. Inst. H. Poincaré, Physique Théorique , vol.60 , pp. 211-239
    • Ginibre, J.1    Ozawa, T.2    Velo, G.3
  • 4
    • 0035922219 scopus 로고    scopus 로고
    • Long range scattering and modified wave operators for some Hartree type equations III, Gevrey spaces and low dimensions
    • J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree type equations III, Gevrey spaces and low dimensions, J. Differential Equations 175 (2001), 415-501.
    • (2001) J. Differential Equations , vol.175 , pp. 415-501
    • Ginibre, J.1    Velo, G.2
  • 5
    • 3042559074 scopus 로고    scopus 로고
    • Time decay of small solutions to quadratic nonlinear Schrödinger equations in 3D
    • N. Hayashi, T. Mizumachi and P.I. Naumkin, Time decay of small solutions to quadratic nonlinear Schrödinger equations in 3D, Differential Integral Equations 16 (2003), 159-179.
    • (2003) Differential Integral Equations , vol.16 , pp. 159-179
    • Hayashi, N.1    Mizumachi, T.2    Naumkin, P.I.3
  • 6
    • 0000462692 scopus 로고    scopus 로고
    • Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations
    • N. Hayashi and P.I. Naumkin, Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Amer. J. Math. 120 (1998), 369-389.
    • (1998) Amer. J. Math. , vol.120 , pp. 369-389
    • Hayashi, N.1    Naumkin, P.I.2
  • 7
    • 0036800092 scopus 로고    scopus 로고
    • Large time behavior for the cubic nonlinear Schrödinger equation
    • N. Hayashi and P.I. Naumkin, Large time behavior for the cubic nonlinear Schrödinger equation, Canad. J. Math. 54 (2002), 1065-1085.
    • (2002) Canad. J. Math. , vol.54 , pp. 1065-1085
    • Hayashi, N.1    Naumkin, P.I.2
  • 8
    • 0003216788 scopus 로고    scopus 로고
    • Lectures on Nonlinear Hyperbolic Differential Equations
    • Springer
    • L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications 26, Springer.
    • Mathématiques & Applications , vol.26
    • Hörmander, L.1
  • 10
    • 0442275914 scopus 로고    scopus 로고
    • Wave operators for the nonlinear Schrödinger equation with a nonlinearity of low degree in one or two dimensions
    • K. Moriyama, S. Tonegawa and Y. Tsutsumi, Wave operators for the nonlinear Schrödinger equation with a nonlinearity of low degree in one or two dimensions, Commun. Contemp. Math. 5 (2003), 983-996.
    • (2003) Commun. Contemp. Math. , vol.5 , pp. 983-996
    • Moriyama, K.1    Tonegawa, S.2    Tsutsumi, Y.3
  • 11
    • 0346386030 scopus 로고    scopus 로고
    • Remarks on scattering for nonlinear Schrödinger equations
    • K. Nakanishi and T. Ozawa, Remarks on scattering for nonlinear Schrödinger equations, NoDEA. 9 (2002), 45-68.
    • (2002) NoDEA , vol.9 , pp. 45-68
    • Nakanishi, K.1    Ozawa, T.2
  • 12
    • 0001366166 scopus 로고
    • Long range scattering for nonlinear Schrödinger equations in one space dimension
    • T. Ozawa, Long range scattering for nonlinear Schrödinger equations in one space dimension, Comm. Math. Phys. 139 (1991), 479-493.
    • (1991) Comm. Math. Phys. , vol.139 , pp. 479-493
    • Ozawa, T.1
  • 13
    • 3042518237 scopus 로고    scopus 로고
    • Long range scattering for nonlinear Schrödinger equations in one and two space dimensions
    • A. Shimomura and S. Tonegawa, Long range scattering for nonlinear Schrödinger equations in one and two space dimensions, Differential Integral Equations 17 (2004), 127-150.
    • (2004) Differential Integral Equations , vol.17 , pp. 127-150
    • Shimomura, A.1    Tonegawa, S.2
  • 14
    • 0000483491 scopus 로고
    • Existence of solutions for Schrödinger evolution equations
    • K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys. 110 (1987), 415-426.
    • (1987) Comm. Math. Phys. , vol.110 , pp. 415-426
    • Yajima, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.