메뉴 건너뛰기




Volumn 16, Issue 2, 2006, Pages 143-154

Estimating the number of clusters using a windowing technique

Author keywords

Automatic cluster detection; Clustering algorithms; Data mining; Range search; Unsupervised learning

Indexed keywords


EID: 33746087056     PISSN: 10546618     EISSN: 15556212     Source Type: Journal    
DOI: 10.1134/S1054661806020015     Document Type: Article
Times cited : (11)

References (50)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike, "A New Look at the Statistical Model Identification, " IEEE Trans. Automat. Contr. AC-19, 1974, pp. 716-723.
    • (1974) IEEE Trans. Automat. Contr. , vol.AC-19 , pp. 716-723
    • Akaike, H.1
  • 2
    • 0034186912 scopus 로고    scopus 로고
    • Dynamic self-organizing maps with controlled growth for knowledge discovery
    • D. Alahakoon, S. K. Halgamuge, and B. Srinivasan, "Dynamic Self-Organizing Maps with Controlled Growth for Knowledge Discovery," IEEE Trans. Neural Networks 11 (3), 601-614 (2000).
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 601-614
    • Alahakoon, D.1    Halgamuge, S.K.2    Srinivasan, B.3
  • 6
    • 24344497671 scopus 로고    scopus 로고
    • Parallelizing the unsupervised k-windows clustering algorithm
    • P. Alevizos, D. K. Tasoulis, and M. N. Vrahatis, "Parallelizing the Unsupervised k-Windows Clustering Algorithm," Lecture Notes Comp. Sci. 3019, 225-232 (2004).
    • (2004) Lecture Notes Comp. Sci. , vol.3019 , pp. 225-232
    • Alevizos, P.1    Tasoulis, D.K.2    Vrahatis, M.N.3
  • 8
    • 0014060964 scopus 로고
    • A clustering technique for summarizing multivariate data
    • G. H. Ball and D. J. Hall, "A Clustering Technique for Summarizing Multivariate Data," Behav. Sci. 12, 153-155 (1967).
    • (1967) Behav. Sci. , vol.12 , pp. 153-155
    • Ball, G.H.1    Hall, D.J.2
  • 9
    • 0019173421 scopus 로고
    • Efficient worst-case data structures for range searching
    • J. L. Bentley and H. A. Maurer, "Efficient Worst-Case Data Structures for Range Searching," Acta Inform. 13, 1551-1568 (1980).
    • (1980) Acta Inform. , vol.13 , pp. 1551-1568
    • Bentley, J.L.1    Maurer, H.A.2
  • 11
    • 0028392841 scopus 로고
    • A multiscale random field model for Bayesian image segmentation
    • C. A. Bouman and M. Shapiro, "A Multiscale Random Field Model for Bayesian Image Segmentation," IEEE Trans. Image Processing 3 (2), 162-177 (1994).
    • (1994) IEEE Trans. Image Processing , vol.3 , Issue.2 , pp. 162-177
    • Bouman, C.A.1    Shapiro, M.2
  • 12
    • 0036605022 scopus 로고    scopus 로고
    • On distributing the clustering process
    • B. Boutsinas and T. Gnardellis, "On Distributing the Clustering Process," Pattern Recognit. Lett. 23 (8), 999-1008 (2002).
    • (2002) Pattern Recognit. Lett. , vol.23 , Issue.8 , pp. 999-1008
    • Boutsinas, B.1    Gnardellis, T.2
  • 13
    • 0021776661 scopus 로고
    • A massively parallel architecture for a self-organizing neural pattern recognition machine
    • G. A. Carpenter and S. Grossberg, "A Massively Parallel Architecture for a Self-Organizing Neural Pattern Rec ognition Machine," Comp. Vis. Graph. Image Processing 37, 54-115 (1987).
    • (1987) Comp. Vis. Graph. Image Processing , vol.37 , pp. 54-115
    • Carpenter, G.A.1    Grossberg, S.2
  • 14
    • 84973857317 scopus 로고
    • A ART-2: Self-organization of stable category recognition codes for analog input patterns
    • G. A. Carpenter and S. Grossberg, "A ART-2: Self-Organization of Stable Category Recognition Codes for Analog Input Patterns," Appl. Opt. 26 (23), 4919-4930 (1987).
    • (1987) Appl. Opt. , vol.26 , Issue.23 , pp. 4919-4930
    • Carpenter, G.A.1    Grossberg, S.2
  • 15
    • 0022767762 scopus 로고
    • Filtering search: A new approach to query-answering
    • B. Chazelle, "Filtering Search: A New Approach to Query-Answering," SIAM J. Comput. 15 (3), 703-724 (1986).
    • (1986) SIAM J. Comput. , vol.15 , Issue.3 , pp. 703-724
    • Chazelle, B.1
  • 17
    • 0019280022 scopus 로고
    • Clustering methodologies in exploratory data analysis
    • R. C. Dubes and A. K. Jain, "Clustering Methodologies in Exploratory Data Analysis," Adv. Comput. 19, 113-228 (1980).
    • (1980) Adv. Comput. , vol.19 , pp. 113-228
    • Dubes, R.C.1    Jain, A.K.2
  • 20
    • 0028748949 scopus 로고
    • Growing cell structure: A self-organizing network for supervised and unsupervised learning
    • B. Fritzke, "Growing Cell Structure: A Self-Organizing Network for Supervised and Unsupervised Learning," Neural Networks 7 (9), 1441-1460 (1994).
    • (1994) Neural Networks , vol.7 , Issue.9 , pp. 1441-1460
    • Fritzke, B.1
  • 23
    • 0023010035 scopus 로고
    • Fractional cascading: II. Applications
    • B. Chazelle and L. J. Guibas, "Fractional Cascading: II. Applications," Algorithmica 1, 163-191 (1986).
    • (1986) Algorithmica , vol.1 , pp. 163-191
    • Chazelle, B.1    Guibas, L.J.2
  • 24
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Z. Huang, "Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values," Data Mining Knowledge Discovery 2, 283-304 (1998).
    • (1998) Data Mining Knowledge Discovery , vol.2 , pp. 283-304
    • Huang, Z.1
  • 26
    • 0014129195 scopus 로고
    • Hierarchical clustering schemes
    • S. Johnson, "Hierarchical Clustering Schemes," Phychometrika (1967), pp. 241-254.
    • (1967) Phychometrika , pp. 241-254
    • Johnson, S.1
  • 29
    • 0033117357 scopus 로고    scopus 로고
    • On finding the number of clusters
    • R. Kothari and D. Pitts, "On Finding the Number of Clusters," Pattern Recognit. Lett. 20, 405-416 (1999).
    • (1999) Pattern Recognit. Lett. , vol.20 , pp. 405-416
    • Kothari, R.1    Pitts, D.2
  • 30
    • 0032523396 scopus 로고    scopus 로고
    • Weight value convergence of the SOM algorithm for discrete input
    • S. Lin and J. Si, "Weight Value Convergence of the SOM Algorithm for Discrete Input," Neural Comput. 10 (4), 807-814 (1998).
    • (1998) Neural Comput. , vol.10 , Issue.4 , pp. 807-814
    • Lin, S.1    Si, J.2
  • 31
    • 0027632248 scopus 로고
    • Neural-gas network for vector quantization and its application to time-series prediction
    • T. Martinetz, S. Berkovich, and K. Schulten, "Neural-Gas Network for Vector Quantization and Its Application to Time-Series Prediction," IEEE Trans. Neural Networks 4 (4), 558-569 (1993).
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.1    Berkovich, S.2    Schulten, K.3
  • 33
    • 0001820920 scopus 로고    scopus 로고
    • X-means: Extending k-means with efficient estimation of the number of clusters
    • D. Pelleg and A. Moore, "X-Means: Extending k-Means with Efficient Estimation of the Number of Clusters," Proc. of the 17th Int. Conf. on Machine Learning, 2000, pp. 727-734.
    • (2000) Proc. of the 17th Int. Conf. on Machine Learning , pp. 727-734
    • Pelleg, D.1    Moore, A.2
  • 36
    • 0026828784 scopus 로고
    • Fast k-dimensional tree algorithms for nearest-neighbor search with application to vector quantization encoding
    • V. Ramasubramanian and K. Paliwal, "Fast k-Dimensional Tree Algorithms for Nearest-Neighbor Search with Application to Vector Quantization Encoding," IEEE Trans. Signal Processing 40 (3), 518-531 (1992).
    • (1992) IEEE Trans. Signal Processing , vol.40 , Issue.3 , pp. 518-531
    • Ramasubramanian, V.1    Paliwal, K.2
  • 37
    • 0001098776 scopus 로고
    • A universal prior for integers and estimation by minimum description length
    • J. Rissanen, "A Universal Prior for Integers and Estimation by Minimum Description Length," Ann. Stat. 11 (2), 417-431 (1983).
    • (1983) Ann. Stat. , vol.11 , Issue.2 , pp. 417-431
    • Rissanen, J.1
  • 38
    • 0014534297 scopus 로고
    • A new approach to clustering
    • E. H. Ruspini, "A New Approach to Clustering," Inf. Control 15, 22-32 (1969).
    • (1969) Inf. Control , vol.15 , pp. 22-32
    • Ruspini, E.H.1
  • 39
    • 22044455069 scopus 로고    scopus 로고
    • Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications
    • J. Sander, M. Ester, H. P. Kriegel, and X. Xu, "Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications," Data Mining Knowledge Discovery 2 (2), 169-194 (1998).
    • (1998) Data Mining Knowledge Discovery , vol.2 , Issue.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.P.3    Xu, X.4
  • 40
    • 0034233339 scopus 로고    scopus 로고
    • Dynamic topology representing networks
    • J. Si, S. Lin, and M. A. Vuong, "Dynamic Topology Representing Networks," Neural Networks 13, 617-627 (2000).
    • (2000) Neural Networks , vol.13 , pp. 617-627
    • Si, J.1    Lin, S.2    Vuong, M.A.3
  • 41
    • 0000825481 scopus 로고
    • A statistical method for evaluating systematic relationships
    • R. Sokal and C. D. Michener, "A Statistical Method for Evaluating Systematic Relationships," Univ. Kansas Sci. Bull. 38, 1409-1438 (1958).
    • (1958) Univ. Kansas Sci. Bull. , vol.38 , pp. 1409-1438
    • Sokal, R.1    Michener, C.D.2
  • 42
    • 77649301315 scopus 로고    scopus 로고
    • Category-based filtering and user stereotype cases to reduce the latency problem in recommender systems
    • Springer Verlag Lecture Notes Series
    • M. Sollenborn and P. Funk, "Category-Based Filtering and User Stereotype Cases to Reduce the Latency Problem in Recommender Systems," Proc. of the 6th Europ. Conf. on Case Based Reasoning, ECCBR2002, Springer Verlag Lecture Notes Series (2002), pp. 395-405.
    • (2002) Proc. of the 6th Europ. Conf. on Case Based Reasoning, ECCBR2002 , pp. 395-405
    • Sollenborn, M.1    Funk, P.2
  • 43
    • 24344479814 scopus 로고    scopus 로고
    • Parallel unsupervised k-windows: An efficient parallel clustering algorithm
    • D. K. Tasoulis, P. Alevizos, B. Boutsinas, and M. N. Vrahatis, "Parallel Unsupervised k-Windows: an Efficient Parallel Clustering Algorithm," Lecture Notes Comp. Sci. 2763, 336-344 (2003).
    • (2003) Lecture Notes Comp. Sci. , vol.2763 , pp. 336-344
    • Tasoulis, D.K.1    Alevizos, P.2    Boutsinas, B.3    Vrahatis, M.N.4
  • 45
    • 24344491523 scopus 로고    scopus 로고
    • Unsupervised clustering on dynamic databases
    • D. K. Tasoulis and M. N. Vrahatis, "Unsupervised Clustering on Dynamic Databases," Pattern Recognit. Lett. 26, 2116-2127 (2005).
    • (2005) Pattern Recognit. Lett. , vol.26 , pp. 2116-2127
    • Tasoulis, D.K.1    Vrahatis, M.N.2
  • 46
    • 84874475042 scopus 로고    scopus 로고
    • Generalizing the k-windows clustering algorithm in metric spaces
    • in press
    • D. K. Tasoulis and M. N. Vrahatis, "Generalizing the k-Windows Clustering Algorithm in Metric Spaces," Math. Comput. Modeling (2006) (in press).
    • (2006) Math. Comput. Modeling
    • Tasoulis, D.K.1    Vrahatis, M.N.2
  • 47
    • 0036230457 scopus 로고    scopus 로고
    • The new k-windows algorithm for improving the k-means clustering algorithm
    • M. N. Vrahatis, B. Boutsinas, P. Alevizos, and G. Pavlides, "The New k-Windows Algorithm for Improving the k-Means Clustering Algorithm," J. Complexity 18, 375-391 (2002).
    • (2002) J. Complexity , vol.18 , pp. 375-391
    • Vrahatis, M.N.1    Boutsinas, B.2    Alevizos, P.3    Pavlides, G.4
  • 48
    • 0031097231 scopus 로고    scopus 로고
    • Topology preservation in self-organizing feature maps: Exact definition and measurement
    • T. Villmann, R. Der, M. Hermann, and M. Martinetz, "Topology Preservation in Self-Organizing Feature Maps: Exact Definition and Measurement," IEEE Trans. Neural Networks 8, 256-266 (1997).
    • (1997) IEEE Trans. Neural Networks , vol.8 , pp. 256-266
    • Villmann, T.1    Der, R.2    Hermann, M.3    Martinetz, M.4
  • 49
    • 0031270958 scopus 로고    scopus 로고
    • Bayesian Ying-Yang machine, clustering and number of clusters
    • L. Xu, "Bayesian Ying-Yang Machine, Clustering and Number of Clusters," Pattern Recognit. Lett. 18, 1167-1178 (1997).
    • (1997) Pattern Recognit. Lett. , vol.18 , pp. 1167-1178
    • Xu, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.