-
2
-
-
34249753618
-
Support vector networks
-
C. Cortes and V.N. Vapnik, Support vector networks, Machine Learning, vol.20, no.3, pp.273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.N.2
-
4
-
-
0035272287
-
An introduction to kernel based learning algorithms
-
K.R. Muller and S. Mike and G. Ratsch and K. Tsuda and B. scholkopf, An Introduction to Kernel Based Learning Algorithms, IEEE Trans. Neural Networks, vol.12, no.2, pp. 181-201, 2001.
-
(2001)
IEEE Trans. Neural Networks
, vol.12
, Issue.2
, pp. 181-201
-
-
Muller, K.R.1
Mike, S.2
Ratsch, G.3
Tsuda, K.4
Scholkopf, B.5
-
6
-
-
0003789653
-
Support vector machines: Training and application
-
MIT, A.I.Lab
-
E. Osuna and R. Freund and F. Girosi Support vector machines: training and application, A.I.Memo-1602, MIT, A.I.Lab, 1997.
-
(1997)
A.I.Memo
, vol.1602
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
7
-
-
0031334889
-
An improved training algorithm for support vector machines
-
Amelia Island
-
E. Osuna and R. Freund and F. Girosi An improved training algorithm for support vector machines. Proceedings of IEEE NNSP'97, Amelia Island, pp. 276-285, 1997.
-
(1997)
Proceedings of IEEE NNSP'97
, pp. 276-285
-
-
Osuna, E.1
Freund, R.2
Girosi, F.3
-
8
-
-
0002714543
-
Making large-scale support vector machine learning practical
-
Scholkopf et al. (Eds.). Cambridge, MA: MIT Press
-
T. Joachims, Making large-scale support vector machine learning practical. In Scholkopf et al. (Eds.). Advances in Kernel Methods-Support Vector Learning (pp. 169-184). Cambridge, MA: MIT Press, 1999. Software available at http://svmlight.joachims.org
-
(1999)
Advances in Kernel Methods-support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
9
-
-
0036158552
-
A simple decomposition method for support vector machines
-
C.W. Hsu and C.J. Lin, A Simple Decomposition Method for Support Vector Machines, Machine Learning, vol.46, no.1-3, pp.291-314, 2002. Software available at http://www.csie.ntu.edu.tw/cjlin/bsvm.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 291-314
-
-
Hsu, C.W.1
Lin, C.J.2
-
10
-
-
0035506741
-
On the convergence of the decomposition method for support vector machines
-
C.J. Lin, On the Convergence of the Decomposition Method for Support Vector Machines IEEE Tran, on Neural Networks, vol.12, no.6, pp. 1288-1298, 2001.
-
(2001)
IEEE Tran, on Neural Networks
, vol.12
, Issue.6
, pp. 1288-1298
-
-
Lin, C.J.1
-
12
-
-
0003836788
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Max Planck Institute for Biological Cybernetics, Tubingen, Germany
-
B. Scholkopf and A.J. Smola and K.R. Muller, Nonlinear Component Analysis as a Kernel Eigenvalue Problem, technical report. Max Planck Institute for Biological Cybernetics, Tubingen, Germany, 1996.
-
(1996)
Technical Report
-
-
Scholkopf, B.1
Smola, A.J.2
Muller, K.R.3
-
15
-
-
0342502195
-
Soft margins for AdaBoost
-
G. Ratsch, and T. Onoda and K.R. Muller, Soft margins for AdaBoost, Machine Learning, vol.42, no.3, pp.287-320, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Ratsch, G.1
Onoda, T.2
Muller, K.R.3
-
17
-
-
0036565280
-
Mercer kernel-based clustering in feature space
-
M. Girolami, Mercer kernel-based clustering in feature space IEEE Trans. on Neural Networks, vol.13, no.3, pp.780-784, 2002.
-
(2002)
IEEE Trans. on Neural Networks
, vol.13
, Issue.3
, pp. 780-784
-
-
Girolami, M.1
-
18
-
-
2942628013
-
An accelerated decomposition algorithm for robust support vector machines
-
W.J. Hu and Q. Song, An Accelerated Decomposition Algorithm for Robust Support Vector Machines, IEEE Trans. on Circuits and Systems, vol.51, no.5, pp.234-240, 2004.
-
(2004)
IEEE Trans. on Circuits and Systems
, vol.51
, Issue.5
, pp. 234-240
-
-
Hu, W.J.1
Song, Q.2
-
19
-
-
0031139176
-
Robust clustering methods: A unified view
-
May
-
R.N. Dave and R. Krishnapuram, Robust clustering methods: a unified view, IEEE Trans. on Fuzzy System, vol.5, no.2, pp.270-293, May. 1997.
-
(1997)
IEEE Trans. on Fuzzy System
, vol.5
, Issue.2
, pp. 270-293
-
-
Dave, R.N.1
Krishnapuram, R.2
|