-
1
-
-
33745912311
-
-
A.C. Tan, D. Gilbert, Machine learning and its application to bioinformatics: an overview, Technical report prepared at Bioinformatics Research Centre, Department of Computing, University of Glasgow, G12 8QQ United Kingdom, Corresponding author (actan@brc.dcs.gla.ac.uk), 2003.
-
-
-
-
2
-
-
0003578015
-
-
Heinemann Educational Books, London
-
Everitt B. Cluster Analysis (1980), Heinemann Educational Books, London
-
(1980)
Cluster Analysis
-
-
Everitt, B.1
-
3
-
-
33745881992
-
-
D. Faure, C. Nédellec, Knowledge acquisition of predicate-argument structures from technical texts using machine learning, in: Proceedings of Current Developments in Knowledge Acquisition: EKAW-99, 1999, pp. 329-334.
-
-
-
-
4
-
-
0343442766
-
Knowledge acquisition via incremental conceptual clustering
-
Fisher D. Knowledge acquisition via incremental conceptual clustering. Machine Learning 2 2 (1987) 139-172
-
(1987)
Machine Learning
, vol.2
, Issue.2
, pp. 139-172
-
-
Fisher, D.1
-
5
-
-
33745917487
-
-
E. Keogh, M. Pazzani, Learning augmented Bayesian classifiers: a comparison of distribution-based and classification-based approaches, in: 7th International Workshop on AI and Statistics, Ft. Lauderdale, Florida, 1999, pp. 225-230.
-
-
-
-
6
-
-
0011909134
-
Conceptual clustering and exploratory data analysis
-
Morgan Kaufmann, Los Altos, CA
-
Biswas G., Weinberg J., Yang Q., and Koller G. Conceptual clustering and exploratory data analysis. Proceedings of the 8th International Workshop on Machine Learning (Evanston, II, June 1991) (1991), Morgan Kaufmann, Los Altos, CA 591-595
-
(1991)
Proceedings of the 8th International Workshop on Machine Learning (Evanston, II, June 1991)
, pp. 591-595
-
-
Biswas, G.1
Weinberg, J.2
Yang, Q.3
Koller, G.4
-
7
-
-
33745899699
-
-
G. Haipeng, Algorithm selection for sorting and probabilistic inference: a machine learning approach, Ph.D. thesis, Department of Computing and Information Sciences, College of Engineering, Kansas State University, 2003.
-
-
-
-
8
-
-
0001249662
-
AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks
-
Cheng J., and Druzdzel M.J. AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks. Journal of Artificial Intelligence Research 13 (2000) 155-188
-
(2000)
Journal of Artificial Intelligence Research
, vol.13
, pp. 155-188
-
-
Cheng, J.1
Druzdzel, M.J.2
-
9
-
-
33745923881
-
-
J.H. Aseltine, An incremental algorithm for information extraction, in: Proceedings of the AAAI-99 Workshop on Machine Learning for Information Extraction, 1999.
-
-
-
-
12
-
-
33745893885
-
-
K.J. Cios et al., Data Mining method for knowledge discovery, Kluwer. .
-
-
-
-
13
-
-
0004121144
-
Semantic networks: an evidential formalization and its connectionist realization
-
Pitman, London
-
Shastri L. Semantic networks: an evidential formalization and its connectionist realization. Research Notes in Artificial Intelligence (1988), Pitman, London
-
(1988)
Research Notes in Artificial Intelligence
-
-
Shastri, L.1
-
14
-
-
33745900836
-
-
M. Gluck, J. Corter, Information, uncertainty, and the utility of categories, in: Proceedings of the Seventh Annual Conference of the Cognitive Science Society, Irvine, CA, 1985, pp. 283-287.
-
-
-
-
15
-
-
0000166613
-
Experiments with incremental concepts formation: UNIMEM
-
Lebowitz M. Experiments with incremental concepts formation: UNIMEM. Machine Learning 2 2 (1987) 103-138
-
(1987)
Machine Learning
, vol.2
, Issue.2
, pp. 103-138
-
-
Lebowitz, M.1
-
16
-
-
33745916851
-
-
M. Lebowitz, Concept learning in a rich input domain: generalization-based memory, in: Machine Learning: An Artificial Intelligence Approach, vol. 2, 1987, pp. 193-214.
-
-
-
-
18
-
-
33745887565
-
-
M.S. Jamil, Learning algorithm model: clustering algorithms system, Ph.D Thesis, VKS University, India, 2005, submitted for award.
-
-
-
-
19
-
-
0013104724
-
I lied about the trees, defaults and definitions in knowledge representations
-
Brachman R.J. I lied about the trees, defaults and definitions in knowledge representations. The Al Magazine (1985) 80-93
-
(1985)
The Al Magazine
, pp. 80-93
-
-
Brachman, R.J.1
-
20
-
-
33745875398
-
-
R.S. Michalski, R. Stepp, Learning from observation: conceptual clustering, in: R. Michalski, J. Carbonell, T. Mitchell (Eds.), Machine Learning: An AI Approach, 1983, pp. 316-364, Chapter 11.
-
-
-
-
21
-
-
33745917783
-
-
R.S. Michalski, R.E. Stepp, How to structure structured objects, in: International Workshop of Machine Learning, 1983a, pp. 156-159.
-
-
-
-
22
-
-
33745905695
-
-
S.B. Thrun et al., The MONK's problems - a performance comparison of different learning algorithms, Technical Report CS-CMU-91-197, Carnegie Mellon University, 1991.
-
-
-
-
23
-
-
0003092797
-
Combining nearest neighbor classifiers through multiple feature subsets
-
Morgan Kaufmann Publishers, Madison, WI
-
Bay S.D. Combining nearest neighbor classifiers through multiple feature subsets. Proceedings of the International Conference on Machine Learning (1998), Morgan Kaufmann Publishers, Madison, WI
-
(1998)
Proceedings of the International Conference on Machine Learning
-
-
Bay, S.D.1
-
25
-
-
0000783818
-
Conceptual clustering, categorisation, and polymorphy
-
Hanson S., and Bauer M. Conceptual clustering, categorisation, and polymorphy. Machine Learning 3 (1989) 343-372
-
(1989)
Machine Learning
, vol.3
, pp. 343-372
-
-
Hanson, S.1
Bauer, M.2
|