메뉴 건너뛰기




Volumn 3951 LNCS, Issue , 2006, Pages 56-67

Controlling sparseness in non-negative tensor factorization

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER PROGRAMMING; COMPUTER SCIENCE; IMAGE PROCESSING; PERFORMANCE;

EID: 33745812062     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11744023_5     Document Type: Conference Paper
Times cited : (36)

References (26)
  • 1
    • 0034861343 scopus 로고    scopus 로고
    • Positive tensor factorization
    • M. Welling and M. Weber, "Positive tensor factorization," Pattern Recog. Letters, vol. 22, no. 12, pp. 1255-1261, 2001.
    • (2001) Pattern Recog. Letters , vol.22 , Issue.12 , pp. 1255-1261
    • Welling, M.1    Weber, M.2
  • 2
    • 31844432834 scopus 로고    scopus 로고
    • Non-negative tensor factorization with applications to statistics and computer vision
    • A. Shashua and T. Hazan, "Non-negative tensor factorization with applications to statistics and computer vision," in Proc. of ICML, 2005.
    • (2005) Proc. of ICML
    • Shashua, A.1    Hazan, T.2
  • 3
    • 33745944718 scopus 로고    scopus 로고
    • Sparse image coding using a 3D non-negative tensor factorization
    • T. Hazan, S. Polak, and A. Shashua, "Sparse image coding using a 3D non-negative tensor factorization," in Proc. of ICCV, 2005.
    • (2005) Proc. of ICCV
    • Hazan, T.1    Polak, S.2    Shashua, A.3
  • 4
    • 0024801666 scopus 로고
    • A receptor model using a specific non-negative transformation technique for ambient aerosol
    • J. Shen and G. W. Israël, "A receptor model using a specific non-negative transformation technique for ambient aerosol," Atmospheric Environment, vol. 23, no. 10, pp. 2289-2298, 1989.
    • (1989) Atmospheric Environment , vol.23 , Issue.10 , pp. 2289-2298
    • Shen, J.1    Israël, G.W.2
  • 5
    • 0028561099 scopus 로고
    • Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values
    • P. Paatero and U. Tapper, "Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values," Environmetrics, vol. 5, pp. 111-126, 1994.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 6
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Oct.
    • D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization," Nature, vol. 401, pp. 788-791, Oct. 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 7
    • 0035683732 scopus 로고    scopus 로고
    • Linear image coding for regression and classification using the tensor-rank principle
    • A. Shashua and A. Levin, "Linear image coding for regression and classification using the tensor-rank principle," in Proc. of CVPR, 2001.
    • (2001) Proc. of CVPR
    • Shashua, A.1    Levin, A.2
  • 8
    • 49149085985 scopus 로고    scopus 로고
    • When does non-negative matrix factorization give a correct decomposition into parts?
    • D. Donoho and V. Stodden, "When does non-negative matrix factorization give a correct decomposition into parts?," in Adv. in NIPS, vol. 17, 2004.
    • (2004) Adv. in NIPS , vol.17
    • Donoho, D.1    Stodden, V.2
  • 9
    • 48749101457 scopus 로고
    • Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics
    • J. B. Kruskal, "Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics," Linear Algebra and its Applications, vol. 18, pp. 95-138, 1977.
    • (1977) Linear Algebra and Its Applications , vol.18 , pp. 95-138
    • Kruskal, J.B.1
  • 10
    • 0033653594 scopus 로고    scopus 로고
    • On the uniqueness of multilinear decompositions of N-way arrays
    • N. D. Sidiropoulos and R. Bro, "On the uniqueness of multilinear decompositions of N-way arrays," J. of Chemometrics, vol. 14, pp. 229-239, 2000.
    • (2000) J. of Chemometrics , vol.14 , pp. 229-239
    • Sidiropoulos, N.D.1    Bro, R.2
  • 11
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. O. Hoyer, "Non-negative matrix factorization with sparseness constraints," J. of Mach. Learning Res., vol. 5, pp. 1457-1469, 2004.
    • (2004) J. of Mach. Learning Res. , vol.5 , pp. 1457-1469
    • Hoyer, P.O.1
  • 12
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization," in Adv. in NIPS, 2000.
    • (2000) Adv. in NIPS
    • Lee, D.D.1    Seung, H.S.2
  • 13
    • 31844431937 scopus 로고    scopus 로고
    • Optimality, computations, and interpretation of nonnegative matrix factorizations
    • submitted to
    • M. Chu, F. Diele, R. Plemmons, and S. Ragni, "Optimality, computations, and interpretation of nonnegative matrix factorizations." submitted to SIAM J. Mat. Anal. Appl., 2004. www4.ncsu.edu:8030/~mtchu/Research/Papers/nnmf.pdf.
    • (2004) SIAM J. Mat. Anal. Appl.
    • Chu, M.1    Diele, F.2    Plemmons, R.3    Ragni, S.4
  • 15
    • 33745889030 scopus 로고    scopus 로고
    • Learning non-negative sparse image codes by convex programming
    • M. Heiler and C. Schnörr, "Learning non-negative sparse image codes by convex programming," in Proc. of ICCV, 2005.
    • (2005) Proc. of ICCV
    • Heiler, M.1    Schnörr, C.2
  • 16
    • 0041995194 scopus 로고
    • Relating data compression, learnability, and the Vapnik-Chervonenkis dimension
    • Univ. of Calif. Santa Cruz
    • N. Littlestone and M. Warmuth, "Relating data compression, learnability, and the Vapnik-Chervonenkis dimension," tech. rep., Univ. of Calif. Santa Cruz, 1986.
    • (1986) Tech. Rep.
    • Littlestone, N.1    Warmuth, M.2
  • 18
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • Dec.
    • B. A. Olshausen and D. J. Field, "Sparse coding with an overcomplete basis set: A strategy employed by V1?," Vision Research, vol. 37, pp. 3311-3325, Dec. 1997.
    • (1997) Vision Research , vol.37 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 21
    • 3142688043 scopus 로고    scopus 로고
    • An independent benchmarking of SDP and SOCP solvers
    • H. Mittelmann, "An independent benchmarking of SDP and SOCP solvers.," Math. Programming, Series B, vol. 95, no. 2, pp. 407-430, 2003.
    • (2003) Math. Programming, Series B , vol.95 , Issue.2 , pp. 407-430
    • Mittelmann, H.1
  • 23
    • 24644475872 scopus 로고    scopus 로고
    • Damped Newton algorithms for matrix factorization with missing data
    • A. M. Buchanan and A. W. Fitzgibbon, "Damped Newton algorithms for matrix factorization with missing data," in CVPR05, vol. 2, pp. 316-322, 2005.
    • (2005) CVPR05 , vol.2 , pp. 316-322
    • Buchanan, A.M.1    Fitzgibbon, A.W.2
  • 24
    • 0023311198 scopus 로고
    • Convex programs with an additional reverse convex constraint
    • Mar.
    • H. Tuy, "Convex programs with an additional reverse convex constraint," J. of Optim. Theory and Applic., vol. 52, pp. 463-486, Mar. 1987.
    • (1987) J. of Optim. Theory and Applic. , vol.52 , pp. 463-486
    • Tuy, H.1
  • 26
    • 0141849712 scopus 로고    scopus 로고
    • MIT Center For Biological and Computational Learning
    • CBCL, "CBCL face database #1." MIT Center For Biological and Computational Learning, http://cbcl.mit.edu/software-datasets, 2000.
    • (2000) CBCL Face Database #1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.