메뉴 건너뛰기




Volumn 3918 LNAI, Issue , 2006, Pages 215-224

ε-tube based pattern selection for support vector machines

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COMPLEXITY; DATABASE SYSTEMS; DISTRIBUTED COMPUTER SYSTEMS; PROBABILITY; STOCHASTIC PROGRAMMING;

EID: 33745796773     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11731139_26     Document Type: Conference Paper
Times cited : (11)

References (13)
  • 4
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge, MA
    • Platt, J. C., Fast Training of Support Vector Machines Using Sequential Minimal Optimization, Advanced in Kernel Methods; Support Vector Machines, MIT Press, Cambridge, MA (1999) 185-208
    • (1999) Advanced in Kernel Methods; Support Vector Machines , pp. 185-208
    • Platt, J.C.1
  • 5
    • 84888219096 scopus 로고    scopus 로고
    • Pattern selection for support vector classifiers
    • Shin, H., Cho, S., Pattern Selection for Support Vector Classifiers, Lecture Notes in Computer Science 2412 (2002) 469-474
    • (2002) Lecture Notes in Computer Science , vol.2412 , pp. 469-474
    • Shin, H.1    Cho, S.2
  • 6
    • 35048874707 scopus 로고    scopus 로고
    • Fast pattern selection algorithm for support vector classifiers: Time complexity analysis
    • Shin, H., Cho, S., Fast Pattern Selection Algorithm for Support Vector Classifiers: Time Complexity Analysis, Lecture Notes in Computer Science 2690 (2003) 1008-1015
    • (2003) Lecture Notes in Computer Science , vol.2690 , pp. 1008-1015
    • Shin, H.1    Cho, S.2
  • 7
    • 10244219830 scopus 로고    scopus 로고
    • A heuristic training for support vector regression
    • Wang, W., Xu, Zongben., A Heuristic Training for Support Vector Regression, Neuro-computing 61 (2004) 259-275
    • (2004) Neuro-computing , vol.61 , pp. 259-275
    • Wang, W.1    Xu, Z.2
  • 9
    • 0003401675 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Royal Holloway College, University of London, UK
    • Smola, A., Schölkopf, B., A Tutorial on Support Vector Regression, NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College, University of London, UK (2002)
    • (2002) NeuroCOLT Technical Report , vol.NC-TR-98-030
    • Smola, A.1    Schölkopf, B.2
  • 10
    • 0346881149 scopus 로고    scopus 로고
    • Experimentally optimal v in support vector regression for different noise models and parameter settings
    • Chalimourda, A., Schölkopf, B., Smola, A., Experimentally Optimal v in Support Vector Regression for Different Noise Models and Parameter Settings, Neural Networks 17 (2004) 127-141
    • (2004) Neural Networks , vol.17 , pp. 127-141
    • Chalimourda, A.1    Schölkopf, B.2    Smola, A.3
  • 11
    • 33745795586 scopus 로고    scopus 로고
    • Santa Fe Dataset: http://www-psych.stanford.edu/~andreas/Time-Series/ SantaFe.html
    • Santa Fe Dataset
  • 13
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky, V., Ma, Y., Practical Selection of SVM Parameters and Noise Estimation for SVM Regression, Neural Networks 17 (2004) 113-126
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.