-
2
-
-
0003798635
-
-
Cambridge University Press, Cambridge, UK
-
Cristianini, N., Shawe-Taylor, J., An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, UK (2000)
-
(2000)
An Introduction to Support Vector Machines
-
-
Cristianini, N.1
Shawe-Taylor, J.2
-
3
-
-
84899013173
-
Support vector regression machines
-
Mozer, M. C., Jordan, M. I., Petsche, T.(eds.), MIT Press, Cambridge, MA
-
Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A., Vapnik, V., Support Vector Regression Machines, In: Mozer, M. C., Jordan, M. I., Petsche, T.(eds.): Advances in Neural Information Processing System 9, MIT Press, Cambridge, MA (1997) 155-161
-
(1997)
Advances in Neural Information Processing System
, vol.9
, pp. 155-161
-
-
Drucker, H.1
Burges, C.J.C.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
4
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
MIT Press, Cambridge, MA
-
Platt, J. C., Fast Training of Support Vector Machines Using Sequential Minimal Optimization, Advanced in Kernel Methods; Support Vector Machines, MIT Press, Cambridge, MA (1999) 185-208
-
(1999)
Advanced in Kernel Methods; Support Vector Machines
, pp. 185-208
-
-
Platt, J.C.1
-
5
-
-
84888219096
-
Pattern selection for support vector classifiers
-
Shin, H., Cho, S., Pattern Selection for Support Vector Classifiers, Lecture Notes in Computer Science 2412 (2002) 469-474
-
(2002)
Lecture Notes in Computer Science
, vol.2412
, pp. 469-474
-
-
Shin, H.1
Cho, S.2
-
6
-
-
35048874707
-
Fast pattern selection algorithm for support vector classifiers: Time complexity analysis
-
Shin, H., Cho, S., Fast Pattern Selection Algorithm for Support Vector Classifiers: Time Complexity Analysis, Lecture Notes in Computer Science 2690 (2003) 1008-1015
-
(2003)
Lecture Notes in Computer Science
, vol.2690
, pp. 1008-1015
-
-
Shin, H.1
Cho, S.2
-
7
-
-
10244219830
-
A heuristic training for support vector regression
-
Wang, W., Xu, Zongben., A Heuristic Training for Support Vector Regression, Neuro-computing 61 (2004) 259-275
-
(2004)
Neuro-computing
, vol.61
, pp. 259-275
-
-
Wang, W.1
Xu, Z.2
-
9
-
-
0003401675
-
A tutorial on support vector regression
-
Royal Holloway College, University of London, UK
-
Smola, A., Schölkopf, B., A Tutorial on Support Vector Regression, NeuroCOLT Technical Report NC-TR-98-030, Royal Holloway College, University of London, UK (2002)
-
(2002)
NeuroCOLT Technical Report
, vol.NC-TR-98-030
-
-
Smola, A.1
Schölkopf, B.2
-
10
-
-
0346881149
-
Experimentally optimal v in support vector regression for different noise models and parameter settings
-
Chalimourda, A., Schölkopf, B., Smola, A., Experimentally Optimal v in Support Vector Regression for Different Noise Models and Parameter Settings, Neural Networks 17 (2004) 127-141
-
(2004)
Neural Networks
, vol.17
, pp. 127-141
-
-
Chalimourda, A.1
Schölkopf, B.2
Smola, A.3
-
11
-
-
33745795586
-
-
Santa Fe Dataset: http://www-psych.stanford.edu/~andreas/Time-Series/ SantaFe.html
-
Santa Fe Dataset
-
-
-
13
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
Cherkassky, V., Ma, Y., Practical Selection of SVM Parameters and Noise Estimation for SVM Regression, Neural Networks 17 (2004) 113-126
-
(2004)
Neural Networks
, vol.17
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.2
|