메뉴 건너뛰기




Volumn 66, Issue 8, 2006, Pages 1002-1013

Parallel EDAs to create multivariate calibration models for quantitative chemical applications

Author keywords

Artificial neural network; Chemical calibration models; Estimation of distribution algorithms; Evolutionary algorithms; Feature extraction and construction; Parallel computing; Partial least squares regression

Indexed keywords

DATA ACQUISITION; MATHEMATICAL MODELS; NEURAL NETWORKS; OPTIMIZATION; PARALLEL PROCESSING SYSTEMS; PROBLEM SOLVING;

EID: 33745726928     PISSN: 07437315     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jpdc.2006.03.001     Document Type: Article
Times cited : (17)

References (28)
  • 1
    • 70350346892 scopus 로고
    • Use of distance measures, information measures and error bounds in feature evaluation
    • Krishnaiah P.R., and Kanal L.N. (Eds), North-Holland, Amsterdam
    • Ben-Bassat M. Use of distance measures, information measures and error bounds in feature evaluation. In: Krishnaiah P.R., and Kanal L.N. (Eds). Handbook of Statistics vol. 2 (1982), North-Holland, Amsterdam 773-791
    • (1982) Handbook of Statistics , vol.2 , pp. 773-791
    • Ben-Bassat, M.1
  • 2
    • 0035826305 scopus 로고    scopus 로고
    • Use of circular dichroism and artificial neural networks for the kinetic-spectrophotometric resolution of enantiomers
    • Blanco M., Coello J., Iturriaga H., Maspoch S., and Porcel M. Use of circular dichroism and artificial neural networks for the kinetic-spectrophotometric resolution of enantiomers. Anal. Chim. Acta 431 (2001) 115-123
    • (2001) Anal. Chim. Acta , vol.431 , pp. 115-123
    • Blanco, M.1    Coello, J.2    Iturriaga, H.3    Maspoch, S.4    Porcel, M.5
  • 4
    • 26844546861 scopus 로고    scopus 로고
    • Feature subset selection by estimation of distribution algorithms
    • Langdon W.B., Cantú-Paz E., Mathias K.E., Roy R., Davis D., Poli R., Balakrishnan K., Honavar V., Rudolph G., Wegener J., Bull L., Potter M.A., Schultz A.C., Miller J.F., Burke E.K., and Jonoska N. (Eds), Morgan Kaufmann, Los Altos, CA
    • Cantú-Paz E. Feature subset selection by estimation of distribution algorithms. In: Langdon W.B., Cantú-Paz E., Mathias K.E., Roy R., Davis D., Poli R., Balakrishnan K., Honavar V., Rudolph G., Wegener J., Bull L., Potter M.A., Schultz A.C., Miller J.F., Burke E.K., and Jonoska N. (Eds). GECCO (2002), Morgan Kaufmann, Los Altos, CA 303-310
    • (2002) GECCO , pp. 303-310
    • Cantú-Paz, E.1
  • 5
    • 27144519762 scopus 로고    scopus 로고
    • Feature subset selection, class separability, and genetic algorithms
    • Deb K., et al. (Ed), Springer, Berlin
    • Cantú-Paz E. Feature subset selection, class separability, and genetic algorithms. In: Deb K., et al. (Ed). Proceedings of the Genetic and Evolutionary Computation Conference GECCO-04 vol. 2 (2004), Springer, Berlin 959-970
    • (2004) Proceedings of the Genetic and Evolutionary Computation Conference GECCO-04 , vol.2 , pp. 959-970
    • Cantú-Paz, E.1
  • 7
    • 33745721066 scopus 로고    scopus 로고
    • N. Friedman, Z. Yakhini, On the sample complexity of learning Bayesian networks, in: Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence, 1996, pp. 274-282.
  • 8
    • 15744392784 scopus 로고    scopus 로고
    • Multicomponent determinations using addition-generated reagent profiles and partial least squares regression
    • García R., López-Cueto G., Ostra M., and Ubide C. Multicomponent determinations using addition-generated reagent profiles and partial least squares regression. Anal. Chim. Acta 535 (2005) 287-295
    • (2005) Anal. Chim. Acta , vol.535 , pp. 287-295
    • García, R.1    López-Cueto, G.2    Ostra, M.3    Ubide, C.4
  • 9
    • 33745734987 scopus 로고    scopus 로고
    • M.A. Hall, L.A. Smith, Feature subset selection: a correlation based filter approach, in: N. Kasabov, et al. (Eds.), Proceedings of the Fourth International Conference on Neural Information Processing and Intelligent Information Systems, Dunedin, New York, 1997, pp. 855-858.
  • 10
    • 0032603116 scopus 로고    scopus 로고
    • GA Strategy for variable selection in QSAR studies: application of GA-based region selection to a 3D-QSAR study of acetylcholinesterase inhibitors
    • Hasegawa K., Kimura T., and Funatsu K. GA Strategy for variable selection in QSAR studies: application of GA-based region selection to a 3D-QSAR study of acetylcholinesterase inhibitors. J. Chem. Inform. Comput. Sci. 39 1 (1999) 112-120
    • (1999) J. Chem. Inform. Comput. Sci. , vol.39 , Issue.1 , pp. 112-120
    • Hasegawa, K.1    Kimura, T.2    Funatsu, K.3
  • 11
    • 17744402661 scopus 로고    scopus 로고
    • Feature subset selection by Bayesian networks based optimization
    • Inza I., Larrañaga P., Etxeberria R., and Sierra B. Feature subset selection by Bayesian networks based optimization. Artificial Intelligence 123 1-2 (2000) 157-184
    • (2000) Artificial Intelligence , vol.123 , Issue.1-2 , pp. 157-184
    • Inza, I.1    Larrañaga, P.2    Etxeberria, R.3    Sierra, B.4
  • 12
    • 33745204039 scopus 로고    scopus 로고
    • Feature subset selection by estimation of distribution algorithms
    • Larrañaga P., and Lozano J.A. (Eds), Kluwer Academic Publishers, Dordrecht
    • Inza I., Larrañaga P., and Sierra B. Feature subset selection by estimation of distribution algorithms. In: Larrañaga P., and Lozano J.A. (Eds). Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation (2002), Kluwer Academic Publishers, Dordrecht 269-294
    • (2002) Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation , pp. 269-294
    • Inza, I.1    Larrañaga, P.2    Sierra, B.3
  • 13
    • 33745734986 scopus 로고    scopus 로고
    • P. Larrañaga, J.A. Lozano (Eds.), Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation, Kluwer Academic Publishers, Dordrecht, 2002.
  • 14
    • 0345019845 scopus 로고    scopus 로고
    • Genetic algorithms applied to feature selection in PLS regression: how and when to use them
    • Leardi R., and Lupiañez A. Genetic algorithms applied to feature selection in PLS regression: how and when to use them. Chemometrics Intelligent Laboratory Syst. 41 (1998) 195-207
    • (1998) Chemometrics Intelligent Laboratory Syst. , vol.41 , pp. 195-207
    • Leardi, R.1    Lupiañez, A.2
  • 16
    • 0035950383 scopus 로고    scopus 로고
    • New way of application of the bromate-bromide mixture in kinetic analysis
    • López-Cueto G., Ostra M., and Ubide C. New way of application of the bromate-bromide mixture in kinetic analysis. Anal. Chim. Acta 445 (2001) 117-126
    • (2001) Anal. Chim. Acta , vol.445 , pp. 117-126
    • López-Cueto, G.1    Ostra, M.2    Ubide, C.3
  • 17
    • 33745721063 scopus 로고    scopus 로고
    • J.L. McClelland, D.E. Rumelhart, Parallel Distributed Processing, vol. 2: Psychological and Biological Models, MIT Press, Cambridge, MA, 1986 (ed. with PDP Research grp).
  • 18
    • 33745190512 scopus 로고    scopus 로고
    • A. Mendiburu, J. Miguel-Alonso, J.A. Lozano, M. Ostra, C. Ubide, Parallel and multi-objective EDAs to create multivariate calibration models for quantitative chemical applications, in: ICPP Workshops, IEEE Computer Society, 2005, pp. 596-603.
  • 19
  • 20
    • 84958959530 scopus 로고    scopus 로고
    • H. Mühlenbein, G. Paaß, From recombination of genes to the estimation of distributions i. binary parameters, in: Lecture Notes in Computer Science, vol. 1411, Parallel Problem Solving from Nature-PPSN IV, 1996, pp. 178-187.
  • 21
    • 0036180213 scopus 로고    scopus 로고
    • A survey of optimization by building and using probabilistic models
    • Pelikan M., Goldberg D.E., and Lobo F. A survey of optimization by building and using probabilistic models. Comput. Optim. Appl. 21 1 (2002) 5-20
    • (2002) Comput. Optim. Appl. , vol.21 , Issue.1 , pp. 5-20
    • Pelikan, M.1    Goldberg, D.E.2    Lobo, F.3
  • 22
    • 33745706956 scopus 로고    scopus 로고
    • R Development Core Team, R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0 (2004).
  • 24
    • 0022471098 scopus 로고
    • Learning representations by backpropagating errors
    • Rumelhart D.E., Hinton G.E., and Williams R.J. Learning representations by backpropagating errors. Nature 323 (1986) 533-536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 25
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Statist. 7 2 (1978) 461-464
    • (1978) Ann. Statist. , vol.7 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 26
    • 33745734976 scopus 로고    scopus 로고
    • N. Villegas, Desenvolupament de procediments cinètics per l'anàlisi de multicomponents, Ph.D. Thesis, Universidad Autónoma de Barcelona, 2003.
  • 27
    • 33745692742 scopus 로고    scopus 로고
    • R. Wehrens, B.-H. Mevik, PLS: Partial Least Squares Regression (PLSR) and Principal Component Regression (PCR), R package version 1.0-2 (2005).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.