-
2
-
-
0031162961
-
Dynamic itemset counting and implication rules for market basket data
-
Brin, S., Motwani, R., Ullman, J., and Tsur, S.: Dynamic itemset counting and implication rules for market basket data. Proc. of ACM SIGMOD Int. Conf. on Management of Data (1997) 255-264
-
(1997)
Proc. of ACM SIGMOD Int. Conf. on Management of Data
, pp. 255-264
-
-
Brin, S.1
Motwani, R.2
Ullman, J.3
Tsur, S.4
-
3
-
-
0032117676
-
Using model trees for classification
-
Frank, E., Wang, Y., Inglis, S., Holmes, G., and Witten, I. H.: Using model trees for classification, Machine Learning, Vol.32, No.l (1998) 63-76
-
(1998)
Machine Learning
, vol.32
, Issue.1
, pp. 63-76
-
-
Frank, E.1
Wang, Y.2
Inglis, S.3
Holmes, G.4
Witten, I.H.5
-
6
-
-
0039443541
-
Measures of association for cross classifications
-
Springer-Verlag
-
Goodman, L. A. and Kruskal, W. H.: Measures of association for cross classifications, Springer Series in Statistics, 1, Springer-Verlag (1979)
-
(1979)
Springer Series in Statistics
, vol.1
-
-
Goodman, L.A.1
Kruskal, W.H.2
-
9
-
-
33745630424
-
Knowledge discovery support from a meningoencephalitis database using an automatic composition tool for inductive applications
-
Hatazawa, H., Negishi, N., Suyama, A, Tsumoto, S., and Yamaguchi, T.: Knowledge Discovery Support from a Meningoencephalitis Database Using an Automatic Composition Tool for Inductive Applications, in Proc. of KDD Challenge 2000 in conjunction with PAKDD2000 (2000) 28-33
-
(2000)
Proc. of KDD Challenge 2000 in Conjunction with PAKDD2000
, pp. 28-33
-
-
Hatazawa, H.1
Negishi, N.2
Suyama, A.3
Tsumoto, S.4
Yamaguchi, T.5
-
10
-
-
0003408496
-
-
Irvine, CA: University of California, Department of Information and Computer Science
-
Hettich, S., Blake, C. L., and Merz, C. J.: UCI Repository of machine learning databases [http://www.ics.uci.edu/~mlearn/MLRepository.html], Irvine, CA: University of California, Department of Information and Computer Science, (1998).
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Hettich, S.1
Blake, C.L.2
Merz, C.J.3
-
13
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
Holte, R. C.: Very simple classification rules perform well on most commonly used datasets, Machine Learning, Vol. 11 (1993) 63-91
-
(1993)
Machine Learning
, vol.11
, pp. 63-91
-
-
Holte, R.C.1
-
14
-
-
0002192370
-
Explora: A multipattern and multistrategy discovery assistant
-
Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy R. (Eds.): AAAI/MIT Press, California
-
Klösgen, W.: Explora: A Multipattern and Multistrategy Discovery Assistant, in Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy R. (Eds.): Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, California (1996) 249-271
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 249-271
-
-
Klösgen, W.1
-
15
-
-
35048892175
-
Evaluation of rule interestingness measures with a clinical dataset on hepatitis
-
Proc. of ECML/PKDD 2004
-
Ohsaki, M., Kitaguchi, S., Kume, S., Yokoi, H., and Yamaguchi, T.: Evaluation of Rule Interestingness Measures with a Clinical Dataset on Hepatitis, in Proc. of ECML/PKDD 2004, LNAI3202 (2004) 362-373
-
(2004)
LNAI
, vol.3202
, pp. 362-373
-
-
Ohsaki, M.1
Kitaguchi, S.2
Kume, S.3
Yokoi, H.4
Yamaguchi, T.5
-
16
-
-
1242268938
-
Tree induction vs. logistic regression: A learning-curve analysis
-
Perlich, C., Provost, F. J., and Simonoff, J. S.: Tree Induction vs. Logistic Regression: A Learning-Curve Analysis, Journal of Machine Learning Research, Vol. 4 (2003) 211-255
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 211-255
-
-
Perlich, C.1
Provost, F.J.2
Simonoff, J.S.3
-
17
-
-
0002877253
-
Discovery, analysis and presentation of strong rules
-
Piatetsky-Shapiro, G., Frawley, W. J. (eds.): AAAI/MIT Press
-
Piatetsky-Shapiro, G.: Discovery, Analysis and Presentation of Strong Rules, in Piatetsky-Shapiro, G., Frawley, W. J. (eds.): Knowledge Discovery in Databases. AAAI/MIT Press (1991) 229-248
-
(1991)
Knowledge Discovery in Databases
, pp. 229-248
-
-
Piatetsky-Shapiro, G.1
-
18
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
B. Schölkopf, C. Burges, and A. Smola, eds., MIT Press
-
Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization, Advances in Kernel Methods - Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola, eds., MIT Press (1999) 185-208
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 185-208
-
-
Platt, J.1
-
20
-
-
0004217877
-
-
Chapter 7, Butterworths, London
-
Rijsbergen, C.: Information Retrieval, Chapter 7, Butterworths, London, (1979) http://www.dcs.gla.ac.Uk/Keith/Chapter.7/Ch.7.html
-
(1979)
Information Retrieval
-
-
Rijsbergen, C.1
-
21
-
-
0002947110
-
Rule induction using information theory
-
Piatetsky-Shapiro, G., Frawley, W. J. (eds.): AAAI/MIT Press
-
Smyth, P. and Goodman, R. M.: Rule Induction using Information Theory. in Piatetsky-Shapiro, G., Frawley, W. J. (eds.): Knowledge Discovery in Databases. AAAI/MIT Press (1991) 159-176
-
(1991)
Knowledge Discovery in Databases
, pp. 159-176
-
-
Smyth, P.1
Goodman, R.M.2
-
25
-
-
0041347740
-
Peculiarity oriented multi-database mining
-
Zhong, N., Yao, Y. Y., and Ohshima, M.: Peculiarity Oriented Multi-Database Mining. IEEE Trans, on Knowledge and Data Engineering, 15, 4, (2003) 952-960
-
(2003)
IEEE Trans, on Knowledge and Data Engineering
, vol.15
, Issue.4
, pp. 952-960
-
-
Zhong, N.1
Yao, Y.Y.2
Ohshima, M.3
|