-
2
-
-
33745447943
-
On the transience of certain processes defined on Galton-Watson trees
-
to appear
-
Collevecchio, A.: On the transience of certain processes defined on Galton-Watson trees. Ann. Probab. to appear, 2005
-
(2005)
Ann. Probab.
-
-
Collevecchio, A.1
-
5
-
-
0000560875
-
Reinforced random walk
-
Davis, B.: Reinforced random walk. Prob. Th. Rel. Fields 84, 203-229 (1990)
-
(1990)
Prob. Th. Rel. Fields
, vol.84
, pp. 203-229
-
-
Davis, B.1
-
6
-
-
0013308128
-
Reinforced and perturbed random walks
-
P. Révész, B. Tóth (eds.), (Bolyai Soc. Math. Studies)
-
Davis, B.: Reinforced and perturbed random walks. In: P. Révész, B. Tóth (eds.), Random walks. Vol.IX, (113-126) (Bolyai Soc. Math. Studies), 1999
-
(1999)
Random Walks.
, vol.9
, pp. 113-126
-
-
Davis, B.1
-
7
-
-
0742271399
-
Vertex-reinforced jump process on trees and finite graphs
-
Davis, B., Volkov, S.: Vertex-reinforced jump process on trees and finite graphs. Prob. Th. Rel. Fields 128, 42-62 (2004)
-
(2004)
Prob. Th. Rel. Fields
, vol.128
, pp. 42-62
-
-
Davis, B.1
Volkov, S.2
-
8
-
-
0036628231
-
Continuous time vertex-reinforced jump processes
-
Davis, B., Volkov, S.: Continuous time vertex-reinforced jump processes. Prob Th. Rel. Fields 84, 281-300 (2002)
-
(2002)
Prob Th. Rel. Fields
, vol.84
, pp. 281-300
-
-
Davis, B.1
Volkov, S.2
-
9
-
-
33745472144
-
Bayesian analysis for reversible Markov chains
-
to appear
-
Diaconis, P., Rolles, S.W.W.: Bayesian analysis for reversible Markov chains. Ann. Statist, to appear, 2005
-
(2005)
Ann. Statist
-
-
Diaconis, P.1
Rolles, S.W.W.2
-
10
-
-
0036012942
-
Once reinforced random walk
-
Durrett, R., Kesten, H., Limic, V.: Once reinforced random walk. Prob. Th. Rel. Fields 122, 567-592 (2002)
-
(2002)
Prob. Th. Rel. Fields
, vol.122
, pp. 567-592
-
-
Durrett, R.1
Kesten, H.2
Limic, V.3
-
12
-
-
29344432646
-
Edge reinforced random walk on a ladder
-
to appear
-
Merkl, F., Rolles, S.W.W.: Edge reinforced random walk on a ladder. Ann. Probab. to appear, 2005
-
(2005)
Ann. Probab.
-
-
Merkl, F.1
Rolles, S.W.W.2
-
13
-
-
0013029075
-
Urn schemes and reinforced random walks
-
Muliere, P., Secchi, P., Walker, S.G.: Urn schemes and reinforced random walks. Stochastic Processes Appl. 88, 59-78 (2000)
-
(2000)
Stochastic Processes Appl.
, vol.88
, pp. 59-78
-
-
Muliere, P.1
Secchi, P.2
Walker, S.G.3
-
14
-
-
0031207030
-
Aggregation, blowup, and collapse: The ABCs of taxis and reinforced random walk
-
Othmer H., Stevens, A.: Aggregation, blowup, and collapse: the ABCs of taxis and reinforced random walk. SIAM J. App. Math. 57, 1044-1081 (1997)
-
(1997)
SIAM J. App. Math.
, vol.57
, pp. 1044-1081
-
-
Othmer, H.1
Stevens, A.2
-
15
-
-
0000925076
-
Phase transition in reinforced random walks and rwre on trees
-
Pemantle, R.: Phase transition in reinforced random walks and rwre on trees. Ann. Probab. 16, 1229-1241 (1988)
-
(1988)
Ann. Probab.
, vol.16
, pp. 1229-1241
-
-
Pemantle, R.1
-
17
-
-
0033164053
-
Vertex reinforced random walks on Z have finite range
-
Pemantle R., Volkov, S.: Vertex reinforced random walks on Z have finite range. Ann. Probab. 27, 1368-1388 (1999)
-
(1999)
Ann. Probab.
, vol.27
, pp. 1368-1388
-
-
Pemantle, R.1
Volkov, S.2
-
18
-
-
0037633746
-
How edge-reinforced random walk arises naturally
-
Rolles, S.W.W.: How edge-reinforced random walk arises naturally. Prob. Th. Rel. Fields 2, 243-260 (2003)
-
(2003)
Prob. Th. Rel. Fields
, vol.2
, pp. 243-260
-
-
Rolles, S.W.W.1
-
19
-
-
33745455132
-
On the recurrence of edge-reinforced random walks on Z ×
-
to appear
-
Rolles, S.W.W.: On the recurrence of edge-reinforced random walks on Z × G. Prob. Th. Rel. Fields to appear, (2005)
-
(2005)
G. Prob. Th. Rel. Fields
-
-
Rolles, S.W.W.1
-
20
-
-
0003478962
-
Reinforced random walk on the d-dimensional integer lattice
-
Department of Statistics, Purdue University
-
Sellke, T.: Reinforced random walk on the d-dimensional integer lattice. Technical report 94-26, Department of Statistics, Purdue University (1994)
-
(1994)
Technical Report
, vol.94
, Issue.26
-
-
Sellke, T.1
-
21
-
-
4544355873
-
VRRW on Z eventually gets stuck at a set of five points
-
Tarrès, P.: VRRW on Z eventually gets stuck at a set of five points. Ann. Probab. 32, 2650-2701 (2004)
-
(2004)
Ann. Probab.
, vol.32
, pp. 2650-2701
-
-
Tarrès, P.1
-
22
-
-
0031508902
-
Beta-Stacy processes and a generalization of the Polya-urn scheme
-
Walker S.G., Muliere, P.: Beta-Stacy processes and a generalization of the Polya-urn scheme. Ann. Statist. 25, 1762-1780 (1997)
-
(1997)
Ann. Statist.
, vol.25
, pp. 1762-1780
-
-
Walker, S.G.1
Muliere, P.2
|