-
2
-
-
0002189550
-
Recent progress on de Finetti's notions of exchangeability
-
Oxford Univ. Press, New York
-
DIACONIS, P. (1988). Recent progress on de Finetti's notions of exchangeability. In Bayesian Statistics 3 111-125. Oxford Univ. Press, New York.
-
(1988)
Bayesian Statistics
, vol.3
, pp. 111-125
-
-
Diaconis, P.1
-
3
-
-
0001576374
-
De Finetti's theorem for Markov chains
-
DIACONIS, P. and FREEDMAN, D. (1980). de Finetti's theorem for Markov chains. Ann. Probab. 8 115-130.
-
(1980)
Ann. Probab.
, vol.8
, pp. 115-130
-
-
Diaconis, P.1
Freedman, D.2
-
7
-
-
0011682450
-
Edge-reinforced random walk on finite graphs
-
Royal Netherland Academy of Arts and Sciences, Amsterdam
-
KEANE, M. S. and ROLLES, S. W. W. (2000). Edge-reinforced random walk on finite graphs. In Infinite Dimensional Stochastic Analysis 217-234. Royal Netherland Academy of Arts and Sciences, Amsterdam.
-
(2000)
Infinite Dimensional Stochastic Analysis
, pp. 217-234
-
-
Keane, M.S.1
Rolles, S.W.W.2
-
9
-
-
0038034721
-
Attracting edge property for a class of reinforced random walks
-
LIMIC, V. (2003). Attracting edge property for a class of reinforced random walks. Ann. Probab. 31 1615-1654.
-
(2003)
Ann. Probab.
, vol.31
, pp. 1615-1654
-
-
Limic, V.1
-
10
-
-
0000925076
-
Phase transition in reinforced random walk and RWRE on trees
-
PEMANTLE, R. (1988). Phase transition in reinforced random walk and RWRE on trees. Ann. Probab. 16 1229-1241.
-
(1988)
Ann. Probab.
, vol.16
, pp. 1229-1241
-
-
Pemantle, R.1
-
11
-
-
0033164053
-
Vertex-reinforced random walk on ℤ has finite range
-
PEMANTLE, R. and VOLKOV, S. (1999). Vertex-reinforced random walk on ℤ has finite range. Ann. Probab. 27 1368-1388.
-
(1999)
Ann. Probab.
, vol.27
, pp. 1368-1388
-
-
Pemantle, R.1
Volkov, S.2
-
12
-
-
0037633746
-
How edge-reinforced random walk arises naturally
-
ROLLES, S. W. W. (2003). How edge-reinforced random walk arises naturally. Probab. Theory Related Fields 126 243-260.
-
(2003)
Probab. Theory Related Fields
, vol.126
, pp. 243-260
-
-
Rolles, S.W.W.1
-
14
-
-
29344452560
-
Recurrence of reinforced random walk on a ladder
-
Purdue Univ
-
SELLKE, T. (1993). Recurrence of reinforced random walk on a ladder. Technical Report 93-10, Purdue Univ.
-
(1993)
Technical Report
, vol.93
, Issue.10
-
-
Sellke, T.1
-
15
-
-
4544355873
-
Vertex-reinforced random walk on ℤ eventually gets stuck on five points
-
TARRÈS, P. (2004). Vertex-reinforced random walk on ℤ eventually gets stuck on five points. Ann. Probab. 32 2650-2701.
-
(2004)
Ann. Probab.
, vol.32
, pp. 2650-2701
-
-
Tarrès, P.1
-
16
-
-
29344456267
-
-
Problems I've worked on. Ph.D. thesis, Univ. Amsterdam
-
VERVOORT, M. (2000). Games, walks and grammars. Problems I've worked on. Ph.D. thesis, Univ. Amsterdam.
-
(2000)
Games, Walks and Grammars
-
-
Vervoort, M.1
-
17
-
-
0035533093
-
Vertex-reinforced random walk on arbitrary graphs
-
VOLKOV, S. (2001). Vertex-reinforced random walk on arbitrary graphs. Ann. Probab. 29 66-91.
-
(2001)
Ann. Probab.
, vol.29
, pp. 66-91
-
-
Volkov, S.1
|