메뉴 건너뛰기




Volumn 3, Issue 4, 2005, Pages 238-241

Constructing support vector machine ensembles for cancer classification based on proteomic profiling

Author keywords

Cancer diagnosis; Constructive approach; Proteomic profiling; Support vector machine ensemble (SVME) design

Indexed keywords

ALGORITHM; ARTICLE; BIOINFORMATICS; CANCER CLASSIFICATION; CANCER DIAGNOSIS; INFORMATION PROCESSING; MASS SPECTROMETRY; OVARY CANCER; PROTEOMICS; VALIDATION STUDY; VECTOR CONTROL;

EID: 33744992230     PISSN: 16720229     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1672-0229(05)03033-0     Document Type: Article
Times cited : (8)

References (11)
  • 1
    • 0742271707 scopus 로고    scopus 로고
    • Cancer recognition with bagged ensembles of support vector machines
    • Valentini, G., et al. 2004. Cancer recognition with bagged ensembles of support vector machines. Neurocomputing 56: 461-466.
    • (2004) Neurocomputing , vol.56 , pp. 461-466
    • Valentini, G.1
  • 2
    • 12144262779 scopus 로고    scopus 로고
    • Bio-molecular cancer prediction with random subspace ensembles of support vector machines
    • Bertoni, A., et al. 2005. Bio-molecular cancer prediction with random subspace ensembles of support vector machines. Neurocomputing 63: 535-539.
    • (2005) Neurocomputing , vol.63 , pp. 535-539
    • Bertoni, A.1
  • 3
    • 0036896235 scopus 로고    scopus 로고
    • An experimental study on diversity for bagging and boosting with linear classifiers
    • Kuncheva, L.I., et al. 2002. An experimental study on diversity for bagging and boosting with linear classifiers. Information Fusion 3: 245-258.
    • (2002) Information Fusion , vol.3 , pp. 245-258
    • Kuncheva, L.I.1
  • 4
    • 10444224738 scopus 로고    scopus 로고
    • Diversity measures for multiple classifier system analysis and design
    • Windeatt, T. 2005. Diversity measures for multiple classifier system analysis and design. Information Fusion 6: 21-36.
    • (2005) Information Fusion , vol.6 , pp. 21-36
    • Windeatt, T.1
  • 5
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Zhou, Z.H., et al. 2002. Ensembling neural networks: many could be better than all. Arti. Intell. 137: 239-263.
    • (2002) Arti. Intell. , vol.137 , pp. 239-263
    • Zhou, Z.H.1
  • 6
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., et al. 2002. Gene selection for cancer classification using support vector machines. Mach. Learn. 46: 389-422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1
  • 7
    • 27744481181 scopus 로고    scopus 로고
    • Multiclass cancer classification by using fuzzy support vector machine and binary decision tree with gene selection
    • Mao, Y., et al. 2005. Multiclass cancer classification by using fuzzy support vector machine and binary decision tree with gene selection. J. Biomed. Biotechnol. 2005: 160-171.
    • (2005) J. Biomed. Biotechnol. , vol.2005 , pp. 160-171
    • Mao, Y.1
  • 8
    • 27944509227 scopus 로고    scopus 로고
    • Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm
    • Mao, Y., et al. 2005. Parameters selection in gene selection using Gaussian kernel support vector machines by genetic algorithm. J. Zhejiang Univ. Sci. B 6: 961-973.
    • (2005) J. Zhejiang Univ. Sci. B , vol.6 , pp. 961-973
    • Mao, Y.1
  • 9
    • 33646129443 scopus 로고    scopus 로고
    • Accelerated recursive feature elimination based on support vector machine for key variable identification
    • Mao, Y., et al. 2006. Accelerated recursive feature elimination based on support vector machine for key variable identification. Chin. J. Chem. Eng. 14: 65-72.
    • (2006) Chin. J. Chem. Eng. , vol.14 , pp. 65-72
    • Mao, Y.1
  • 11
    • 0742269626 scopus 로고    scopus 로고
    • Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum
    • Lilien, R.H., et al. 2003. Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum. J. Comput. Biol. 10: 925-946.
    • (2003) J. Comput. Biol. , vol.10 , pp. 925-946
    • Lilien, R.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.