메뉴 건너뛰기




Volumn 19, Issue 4, 2006, Pages 500-513

Comparison of recent methods for inference of variable influence in neural networks

Author keywords

Automatic relevance determination; General influence measure; Information theoretic approach; Sensitivity analysis; Sequential zeroing of weights; Variable influence in neural networks

Indexed keywords

DATABASE SYSTEMS; INFORMATION THEORY; MATHEMATICAL MODELS; SENSITIVITY ANALYSIS;

EID: 33744944043     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2005.09.002     Document Type: Article
Times cited : (35)

References (20)
  • 1
    • 0034621370 scopus 로고    scopus 로고
    • Algorithmic approaches for studies of variable influence, contribution and selection in neural networks
    • Andersson F.O., Åberg M., and Jacobsson S.P. Algorithmic approaches for studies of variable influence, contribution and selection in neural networks. Chemometrics and Intelligent Laboratory Systems 51 (2000) 61-72
    • (2000) Chemometrics and Intelligent Laboratory Systems , vol.51 , pp. 61-72
    • Andersson, F.O.1    Åberg, M.2    Jacobsson, S.P.3
  • 2
    • 0037699059 scopus 로고    scopus 로고
    • Bollas, G. M., Papadokonstantakis, S., Michalopoulos, J., Arampatzis, G., Lappas, A. A., Vasalos, I. A., & Lygeros, A. (2003). Using hybrid neural networks in scaling up an FCC model from a pilot plant to an industrial unit. Chemical Engineering & Processing, 42(8-9), 697-713.
  • 4
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stichcombe M., and White H. Multilayer feedforward networks are universal approximators. Neural Networks 2 (1989) 359-366
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stichcombe, M.2    White, H.3
  • 5
    • 0033082449 scopus 로고    scopus 로고
    • Using input parameter influences to support the decisions of feedforward neural networks
    • Howes P., and Crook N. Using input parameter influences to support the decisions of feedforward neural networks. Neurocomputing 24 (1999) 191-206
    • (1999) Neurocomputing , vol.24 , pp. 191-206
    • Howes, P.1    Crook, N.2
  • 6
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Kramer M.A. Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal 37 (1991) 233-243
    • (1991) AIChE Journal , vol.37 , pp. 233-243
    • Kramer, M.A.1
  • 7
    • 0032532847 scopus 로고    scopus 로고
    • Case study investigating the application of neural networks for process modeling and condition monitoring
    • Lennox B., Rutherford P., Montague G.A., and Haughin C. Case study investigating the application of neural networks for process modeling and condition monitoring. Computers and Chemical Engineering 22 11 (1998) 1573-1579
    • (1998) Computers and Chemical Engineering , vol.22 , Issue.11 , pp. 1573-1579
    • Lennox, B.1    Rutherford, P.2    Montague, G.A.3    Haughin, C.4
  • 8
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay D.J.C. Bayesian interpolation. Neural Computation 4 (1992) 415-447
    • (1992) Neural Computation , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 9
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • MacKay D.J.C. A practical Bayesian framework for backpropagation networks. Neural Computation 4 (1992) 448-472
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • MacKay, D.J.C.1
  • 10
    • 0000597408 scopus 로고    scopus 로고
    • Comparison of approximate methods for handling hyperparameters
    • MacKay D.J.C. Comparison of approximate methods for handling hyperparameters. Neural Computation 11 5 (1999) 1035-1068
    • (1999) Neural Computation , vol.11 , Issue.5 , pp. 1035-1068
    • MacKay, D.J.C.1
  • 13
    • 0032517826 scopus 로고    scopus 로고
    • A novel method for examination of the variable contribution to computational neural network models
    • Nord L.I., and Jacobsson S.P. A novel method for examination of the variable contribution to computational neural network models. Chemometrics and Intelligent Laboratory Systems 44 (1998) 153-160
    • (1998) Chemometrics and Intelligent Laboratory Systems , vol.44 , pp. 153-160
    • Nord, L.I.1    Jacobsson, S.P.2
  • 14
    • 0032803502 scopus 로고    scopus 로고
    • Bayesian neural networks for classification: How useful is the evidence framework?
    • Penny W.D., and Roberts S.J. Bayesian neural networks for classification: How useful is the evidence framework?. Neural Networks 12 (1999) 877-892
    • (1999) Neural Networks , vol.12 , pp. 877-892
    • Penny, W.D.1    Roberts, S.J.2
  • 16
    • 0033343363 scopus 로고    scopus 로고
    • An algorithm for extraction of decision rules from artificial neural networks
    • Schmitz G.P.J., Aldrich C., and Gouws F.S. An algorithm for extraction of decision rules from artificial neural networks. IEEE Transactions on Neural Networks 10 6 (1999) 1390-1401
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.6 , pp. 1390-1401
    • Schmitz, G.P.J.1    Aldrich, C.2    Gouws, F.S.3
  • 18
    • 0028484335 scopus 로고
    • Modeling chemical processes using prior knowledge and neural networks
    • Thompson M.L., and Kramer M.A. Modeling chemical processes using prior knowledge and neural networks. AIChE Journal 40 8 (1994) 1328-1340
    • (1994) AIChE Journal , vol.40 , Issue.8 , pp. 1328-1340
    • Thompson, M.L.1    Kramer, M.A.2
  • 19
    • 0032316330 scopus 로고    scopus 로고
    • Potential function based neural networks and its application to the classification of complex chemical patterns
    • Weixiang Z., Dezhao C., and Shangxu H. Potential function based neural networks and its application to the classification of complex chemical patterns. Computers and Chemistry 25 2 (1998) 385-391
    • (1998) Computers and Chemistry , vol.25 , Issue.2 , pp. 385-391
    • Weixiang, Z.1    Dezhao, C.2    Shangxu, H.3
  • 20
    • 0031256924 scopus 로고    scopus 로고
    • Identification and predictive control of a melter unit used in the sugar industry
    • Zamarreno J.M., and Vega P. Identification and predictive control of a melter unit used in the sugar industry. Artificial Intelligence in Engineering 11 4 (1997) 365-373
    • (1997) Artificial Intelligence in Engineering , vol.11 , Issue.4 , pp. 365-373
    • Zamarreno, J.M.1    Vega, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.