-
2
-
-
0141679133
-
The notion of N = 1 supergeometric vertex operator superalgebra and the isomorphism theorem
-
Barron, K. (2003). The notion of N = 1 supergeometric vertex operator superalgebra and the isomorphism theorem. Commun. Contemp. Math. 5(4):481-567.
-
(2003)
Commun. Contemp. Math.
, vol.5
, Issue.4
, pp. 481-567
-
-
Barron, K.1
-
3
-
-
0034658806
-
Factorization of formal exponentials and uniformization
-
Barron, K., Huang, Y.-Z., Lepowsky, J. (2001). Factorization of formal exponentials and uniformization. J. Algebra 228:551-579.
-
(2001)
J. Algebra
, vol.228
, pp. 551-579
-
-
Barron, K.1
Huang, Y.-Z.2
Lepowsky, J.3
-
4
-
-
0010882054
-
Infinite conformal symmetries in two-dimensional quantum field theory
-
Belavin, A., Polyakov, A. E., Zamolodchikov, A. (1984). Infinite conformal symmetries in two-dimensional quantum field theory. Nuclear Physics 6241:333-380.
-
(1984)
Nuclear Physics
, vol.6241
, pp. 333-380
-
-
Belavin, A.1
Polyakov, A.E.2
Zamolodchikov, A.3
-
6
-
-
0004152420
-
-
Graduate Texts in Mathematics, 71, New York: Springer-Verlag
-
Farkas, H. M., Kra, I. (1992). Riemann Surfaces. 2nd ed. Graduate Texts in Mathematics, 71, New York: Springer-Verlag.
-
(1992)
Riemann Surfaces. 2nd Ed.
-
-
Farkas, H.M.1
Kra, I.2
-
7
-
-
0003748735
-
-
Memoirs of the Amer. Math. Soc., Number 494, Rhode Island: Providence
-
Frenkel, I. B., Huang, Y.-Z., Lepowsky, J. (1993). On Axiomatic Approaches to Vertex Operator Algebras and Modules. Memoirs of the Amer. Math. Soc., Number 494, Rhode Island: Providence.
-
(1993)
On Axiomatic Approaches to Vertex Operator Algebras and Modules
-
-
Frenkel, I.B.1
Huang, Y.-Z.2
Lepowsky, J.3
-
8
-
-
0003648007
-
-
San Diego: Academic Press, Inc.
-
Frenkel, I. B., Lepowsky, J., Meurman, A. (1988). Vertex Operator Algebras and the Monster. San Diego: Academic Press, Inc.
-
(1988)
Vertex Operator Algebras and the Monster
-
-
Frenkel, I.B.1
Lepowsky, J.2
Meurman, A.3
-
9
-
-
0011504985
-
Nonlinear models in 2 + e dimensions
-
Friedan, D. (1985). Nonlinear models in 2 + e dimensions. Ann. Phys. 163(2):318-419.
-
(1985)
Ann. Phys.
, vol.163
, Issue.2
, pp. 318-419
-
-
Friedan, D.1
-
10
-
-
24444481808
-
The analytic geometry of two-dimensional conformal field theory
-
Friedan, D., Shenker, S. (1987). The analytic geometry of two-dimensional conformal field theory. Nuclear Physics 6281:509-545.
-
(1987)
Nuclear Physics
, vol.6281
, pp. 509-545
-
-
Friedan, D.1
Shenker, S.2
-
11
-
-
0003703771
-
-
Introduction. 2nd ed. Cambridge Monographs on Mathematical Physics, Cambridge: Cambridge University Press
-
Green, M., Schwarz, J., Witten, E. (1998). Superstring Theory. Vol. 1. Introduction. 2nd ed. Cambridge Monographs on Mathematical Physics, Cambridge: Cambridge University Press.
-
(1998)
Superstring Theory
, vol.1
-
-
Green, M.1
Schwarz, J.2
Witten, E.3
-
14
-
-
0001645655
-
A theory of tensor products for module categories for a vetex algebra, IV
-
Huang, Y.-Z. (1995a). A theory of tensor products for module categories for a vetex algebra, IV. J. Pure Appl. Alg. 100:173-216.
-
(1995)
J. Pure Appl. Alg.
, vol.100
, pp. 173-216
-
-
Huang, Y.-Z.1
-
15
-
-
26444584940
-
Differential equations, duality, and modular invariance
-
Huang, Y.-Z. Differential equations, duality, and modular invariance. Comm. Contemp. Math. 7:649-706.
-
Comm. Contemp. Math.
, vol.7
, pp. 649-706
-
-
Huang, Y.-Z.1
-
16
-
-
0000211464
-
Operadic formulation of the notion of vertex operator algebra
-
Huang, Y.-Z., Lepowsky, J. (1994a). Operadic formulation of the notion of vertex operator algebra. Contemporary Mathematics 175:131-148.
-
(1994)
Contemporary Mathematics
, vol.175
, pp. 131-148
-
-
Huang, Y.-Z.1
Lepowsky, J.2
-
17
-
-
0002624352
-
Tensor products of modules for a vertex operator algebra and vertex tensor categories
-
Brylinski, J.-L., Brylinski, R., Guillemin, V., Kac, V., eds. Progress in Mathematics, Boston: Birkhäuser
-
Huang, Y.-Z., Lepowsky, J. (1994b). Tensor products of modules for a vertex operator algebra and vertex tensor categories. In: Brylinski, J.-L., Brylinski, R., Guillemin, V., Kac, V., eds. Lie Theory and Geometry: In Honor of Bertram Kostant, Progress in Mathematics, Vol. 123. Boston: Birkhäuser, pp. 349-383.
-
(1994)
Lie Theory and Geometry: In Honor of Bertram Kostant
, vol.123
, pp. 349-383
-
-
Huang, Y.-Z.1
Lepowsky, J.2
-
18
-
-
0000893321
-
A theory of tensor products for module categories for a vetex algebra i
-
Huang, Y.-Z., Lepowsky, J. (1995a). A theory of tensor products for module categories for a vetex algebra I. Selecta Mathematica (New Series) 1:699-756.
-
(1995)
Selecta Mathematica (New Series)
, vol.1
, pp. 699-756
-
-
Huang, Y.-Z.1
Lepowsky, J.2
-
19
-
-
34249759387
-
A theory of tensor products for module categories for a vetex algebra. II
-
Huang, Y.-Z., Lepowsky, J. (1995b). A theory of tensor products for module categories for a vetex algebra. II. Selecta Mathematica (New Series) 1:757-786.
-
(1995)
Selecta Mathematica (New Series)
, vol.1
, pp. 757-786
-
-
Huang, Y.-Z.1
Lepowsky, J.2
-
20
-
-
0001645660
-
A theory of tensor products for module categories for a vetex algebra, III
-
Huang, Y.-Z., Lepowsky. J. (1995c). A theory of tensor products for module categories for a vetex algebra, III. J. Pure Appl. Alg. 100:141-171.
-
(1995)
J. Pure Appl. Alg.
, vol.100
, pp. 141-171
-
-
Huang, Y.-Z.1
Lepowsky, J.2
-
22
-
-
27844517016
-
Constructions of vertex operator coalgebras via vertex operator algebras
-
Hubbard, K. (2005b). Constructions of vertex operator coalgebras via vertex operator algebras. J. Algebra 294:278-293.
-
(2005)
J. Algebra
, vol.294
, pp. 278-293
-
-
Hubbard, K.1
-
26
-
-
33646803754
-
-
Lecture Notes in Mathematics, Springer-Verlag
-
May, J. P. (1972). The Geometry of Iterated Loop Spaces. Lecture Notes in Mathematics, Number 271, Springer-Verlag.
-
(1972)
The Geometry of Iterated Loop Spaces
, Issue.271
-
-
May, J.P.1
-
27
-
-
0011692077
-
-
Mathematical Surverys and Monographs, American Mathematical Society
-
Markl, M., Shnider, S., Stasheff, J. (2002). Operads in Algebra, Topology and Physics. Mathematical Surverys and Monographs, Vol. 96, American Mathematical Society.
-
(2002)
Operads in Algebra, Topology and Physics
, vol.96
-
-
Markl, M.1
Shnider, S.2
Stasheff, J.3
-
28
-
-
0542373499
-
Invarients of 3-manifolds via link polynomials and quantum groups
-
Reshetikhin, N., Turaev, V. (1991). Invarients of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103:547-597.
-
(1991)
Invent. Math.
, vol.103
, pp. 547-597
-
-
Reshetikhin, N.1
Turaev, V.2
-
29
-
-
33744722285
-
Unitary representations of some infinite-dimensional groups
-
Segal, G. (1981). Unitary representations of some infinite-dimensional groups. Commun. Math. Phys. 80:301-342.
-
(1981)
Commun. Math. Phys.
, vol.80
, pp. 301-342
-
-
Segal, G.1
-
30
-
-
33645579078
-
The definition of conformal field theory
-
Tillman, U., ed. London Mathematical Society Lecture Notes Series
-
Segal, G. (2004). The definition of conformal field theory. In: Tillman, U., ed. Topology, Geometry and Quantum Field Theory: Proceedings of the 2002 Oxford Symposium in Honour of the 60th Birthday of Graeme Segal. London Mathematical Society Lecture Notes Series, No. 308.
-
(2004)
Topology, Geometry and Quantum Field Theory: Proceedings of the 2002 Oxford Symposium in Honour of the 60th Birthday of Graeme Segal
, Issue.308
-
-
Segal, G.1
-
32
-
-
0000893601
-
Conformal theories and punctured surfaces
-
Vafa, C. (1987). Conformal theories and punctured surfaces. Phys. Lett. 8199:195-202.
-
(1987)
Phys. Lett.
, vol.8199
, pp. 195-202
-
-
Vafa, C.1
-
33
-
-
0030551014
-
Modular invariance of characters of vertex operator algebras
-
Zhu, Y. (1996). Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9:237-307.
-
(1996)
J. Amer. Math. Soc.
, vol.9
, pp. 237-307
-
-
Zhu, Y.1
|