메뉴 건너뛰기




Volumn 294, Issue 1, 2005, Pages 278-293

Constructions of vertex operator coalgebras via vertex operator algebras

Author keywords

[No Author keywords available]

Indexed keywords


EID: 27844517016     PISSN: 00218693     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jalgebra.2005.04.010     Document Type: Article
Times cited : (7)

References (27)
  • 1
    • 0001056693 scopus 로고
    • Vertex algebras, Kac-Moody algebras, and the Monster
    • R. Borcherds Vertex algebras, Kac-Moody algebras, and the Monster Proc. Natl. Acad. Sci. USA 83 1986 3068-3071
    • (1986) Proc. Natl. Acad. Sci. USA , vol.83 , pp. 3068-3071
    • Borcherds, R.1
  • 3
    • 0002498662 scopus 로고
    • Introduction to vertex operator algebras I
    • C. Dong Introduction to vertex operator algebras I Sūrikaisekikenkyūsho Kōkyūroku 904 1995 1-25
    • (1995) Sūrikaisekikenkyūsho Kōkyūroku , vol.904 , pp. 1-25
    • Dong, C.1
  • 5
    • 0002630015 scopus 로고
    • Basic representations of affine Lie algebras and dual resonance models
    • I. Frenkel V. Kac Basic representations of affine Lie algebras and dual resonance models Invent. Math. 62 1980 23-66
    • (1980) Invent. Math. , vol.62 , pp. 23-66
    • Frenkel, I.1    Kac, V.2
  • 7
    • 0011504985 scopus 로고
    • Nonlinear models in 2 + ε dimensions
    • D. Friedan Nonlinear models in 2 + ε dimensions Ann. Phys. 163 2 1985 318-419
    • (1985) Ann. Phys. , vol.163 , Issue.2 , pp. 318-419
    • Friedan, D.1
  • 9
    • 0004310480 scopus 로고
    • On abelian intertwining algebras and modules
    • PhD thesis, Rutgers University
    • H. Guo, On abelian intertwining algebras and modules, PhD thesis, Rutgers University, 1994
    • (1994)
    • Guo, H.1
  • 10
    • 0003754781 scopus 로고
    • On the geometric interpretation of vertex operator algebras
    • PhD thesis, Rutgers University
    • Y.-Z. Huang, On the geometric interpretation of vertex operator algebras, PhD thesis, Rutgers University, 1990
    • (1990)
    • Huang, Y.-Z.1
  • 12
    • 4644242369 scopus 로고    scopus 로고
    • Differential equations, duality, and modular invariance
    • preprint math.QA/0303049
    • Y.-Z. Huang Differential equations, duality, and modular invariance preprint math.QA/0303049
    • Huang, Y.-Z.1
  • 13
    • 0000211464 scopus 로고
    • Operadic formulation of the notion of vertex operator algebra
    • Y.-Z. Huang J. Lepowsky Operadic formulation of the notion of vertex operator algebra Contemp. Math. 175 1994 131-148
    • (1994) Contemp. Math. , vol.175 , pp. 131-148
    • Huang, Y.-Z.1    Lepowsky, J.2
  • 14
    • 0002624352 scopus 로고
    • Tensor products of modules for a vertex operator algebra and vertex tensor categories
    • J.-L. Brylinski R. Brylinski V. Guillemin V. Kac (Eds.) Progr. Math. Birkhäuser Boston
    • Y.-Z. Huang J. Lepowsky Tensor products of modules for a vertex operator algebra and vertex tensor categories in: J.-L. Brylinski R. Brylinski V. Guillemin V. Kac (Eds.) Lie Theory and Geometry: In Honor of Bertram Kostant Progr. Math. vol. 123 1994 Birkhäuser Boston 349-383
    • (1994) Lie Theory and Geometry: In Honor of Bertram Kostant , vol.123 , pp. 349-383
    • Huang, Y.-Z.1    Lepowsky, J.2
  • 15
    • 27844599003 scopus 로고    scopus 로고
    • The notion of a vertex operator coalgebra: A construction and geometric characterization
    • PhD thesis, University of Notre Dame
    • K. Hubbard, The notion of a vertex operator coalgebra: A construction and geometric characterization, PhD thesis, University of Notre Dame, 2005
    • (2005)
    • Hubbard, K.1
  • 16
    • 33646769961 scopus 로고    scopus 로고
    • The notion of vertex operator coalgebra and a geometric interpretation
    • math.QA/0405461 in press
    • K. Hubbard The notion of vertex operator coalgebra and a geometric interpretation math.QA/0405461 Comm. Algebra, in press
    • Comm. Algebra
    • Hubbard, K.1
  • 17
    • 27844609984 scopus 로고    scopus 로고
    • Vertex coalgebras, modules, commutativity and associativity
    • in preparation
    • K. Hubbard, Vertex coalgebras, modules, commutativity and associativity, in preparation
    • Hubbard, K.1
  • 18
    • 0001665177 scopus 로고
    • Hecke algebra representations of braid groups and link polynomials
    • V.F.R. Jones Hecke algebra representations of braid groups and link polynomials Ann. of Math. 126 1987 335-388
    • (1987) Ann. of Math. , vol.126 , pp. 335-388
    • Jones, V.F.R.1
  • 19
    • 0001627674 scopus 로고
    • Symmetric invariant bilinear forms on vertex operator algebras
    • H. Li Symmetric invariant bilinear forms on vertex operator algebras J. Pure Appl. Algebra 96 1994 279-297
    • (1994) J. Pure Appl. Algebra , vol.96 , pp. 279-297
    • Li, H.1
  • 22
    • 0542373499 scopus 로고
    • Invariants of 3-manifolds via link polynomials and quantum groups
    • N. Reshetikhin V. Turaev Invariants of 3-manifolds via link polynomials and quantum groups Invent. Math. 103 1991 547-597
    • (1991) Invent. Math. , vol.103 , pp. 547-597
    • Reshetikhin, N.1    Turaev, V.2
  • 23
    • 33744722285 scopus 로고
    • Unitary representations of some infinite-dimensional groups
    • G. Segal Unitary representations of some infinite-dimensional groups Comm. Math. Phys. 80 1981 301-342
    • (1981) Comm. Math. Phys. , vol.80 , pp. 301-342
    • Segal, G.1
  • 24
    • 0003910255 scopus 로고
    • The definition of conformal field theory
    • preprint
    • G. Segal, The definition of conformal field theory, preprint, 1988
    • (1988)
    • Segal, G.1
  • 26
    • 14644388676 scopus 로고
    • Quantum field theory and the Jones polynomial
    • E. Witten Quantum field theory and the Jones polynomial Comm. Math. Phys. 121 1989 351-399
    • (1989) Comm. Math. Phys. , vol.121 , pp. 351-399
    • Witten, E.1
  • 27
    • 0030551014 scopus 로고    scopus 로고
    • Modular invariance of characters of vertex operator algebras
    • Y. Zhu Modular invariance of characters of vertex operator algebras J. Amer. Math. Soc. 9 1996 237-307
    • (1996) J. Amer. Math. Soc. , vol.9 , pp. 237-307
    • Zhu, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.