-
1
-
-
85065356856
-
Mathematical model of the non-equilibrium water-oil displacement in porous strata
-
G. I. BARENBLATT, J. GARCIA-AZORERO, A. DE PABLO, AND J. L. VAZQUEZ, Mathematical model of the non-equilibrium water-oil displacement in porous strata, Appl. Anal., 65 (1997), pp. 19-45.
-
(1997)
Appl. Anal.
, vol.65
, pp. 19-45
-
-
Barenblatt, G.I.1
Garcia-Azorero, J.2
De Pablo, A.3
Vazquez, A.J.L.4
-
2
-
-
0002449293
-
Nonequilibrium filtration of non-mixing fluids
-
in Russian
-
G. I. BARENBLATT AND A. P. VINNICHENKO, Nonequilibrium filtration of non-mixing fluids, Adv. in Mech., 3 (1980), pp. 35-50 (in Russian).
-
(1980)
Adv. in Mech.
, vol.3
, pp. 35-50
-
-
Barenblatt, G.I.1
Vinnichenko, A.P.2
-
4
-
-
0035538197
-
Alternate Evans functions and viscous shock waves
-
S. BENZONI-GAVAGE, D. SERRE, AND K. ZUMBRUN, Alternate Evans functions and viscous shock waves, SIAM J. Math. Anal., 32 (2001), pp. 929-962.
-
(2001)
SIAM J. Math. Anal.
, vol.32
, pp. 929-962
-
-
Benzoni-Gavage, S.1
Serre, D.2
Zumbrun, A.K.3
-
6
-
-
0007086538
-
Shock profile solutions of the Boltzmann equation
-
R. CAFLISCH AND B. NICKOLAENKO, Shock profile solutions of the Boltzmann equation, Comm. Math. Phys., 86 (1982), pp. 161-194.
-
(1982)
Comm. Math. Phys.
, vol.86
, pp. 161-194
-
-
Caflisch, R.1
Nickolaenko, B.2
-
8
-
-
84980087271
-
Symmetric hyperbolic linear differential equations
-
K. O. FRIEDRICHS, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math., 7 (1954), pp. 345-392.
-
(1954)
Comm. Pure Appl. Math.
, vol.7
, pp. 345-392
-
-
Friedrichs, K.O.1
-
9
-
-
84980187409
-
On the laws of relativistic electro-magneto-fluid dynamics
-
K. O. FRIEDRICHS, On the laws of relativistic electro-magneto-fluid dynamics, Comm. Pure Appl. Math., 27 (1974), pp. 749-808.
-
(1974)
Comm. Pure Appl. Math.
, vol.27
, pp. 749-808
-
-
Friedrichs, K.O.1
-
10
-
-
0040942605
-
The gap lemma and geometric criteria for instability of viscous shock profiles
-
R. GARDNER AND K. ZUMBRUN, The gap lemma and geometric criteria for instability of viscous shock profiles, Comm. Pure Appl. Math., 51 (1998), pp. 797-855.
-
(1998)
Comm. Pure Appl. Math.
, vol.51
, pp. 797-855
-
-
Gardner, R.1
Zumbrun, K.2
-
11
-
-
0034833173
-
Linear stability of shock profiles for systems of conservation laws with semi-linear relaxation
-
P. GODILLON, Linear stability of shock profiles for systems of conservation laws with semi-linear relaxation, Phys. D, 148 (2001), pp. 289-316.
-
(2001)
Phys. D
, vol.148
, pp. 289-316
-
-
Godillon, P.1
-
12
-
-
0001054919
-
Remarks on the stability of viscous shock waves
-
Raleigh, NC, 1990, SIAM, Philadelphia, PA
-
J. GOODMAN, Remarks on the stability of viscous shock waves, in Viscous Profiles and Numerical Methods for Shock Waves, Raleigh, NC, 1990, SIAM, Philadelphia, PA, 1991, pp. 66-72.
-
(1991)
Viscous Profiles and Numerical Methods for Shock Waves
, pp. 66-72
-
-
Goodman, J.1
-
13
-
-
0034365529
-
Pointwise estimates for dispersive-diffusive shock waves
-
P. HOWARD AND K. ZUMBRUN, Pointwise estimates for dispersive-diffusive shock waves, Arch. Ration. Mech. Anal., 155 (2000), pp. 85-169.
-
(2000)
Arch. Ration. Mech. Anal.
, vol.155
, pp. 85-169
-
-
Howard, P.1
Zumbrun, K.2
-
16
-
-
84990701264
-
The relaxation schemes for systems of conservation laws in arbitrary space dimensions
-
S. JIN AND Z. XIN, The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math., 48 (1995), pp. 235-276.
-
(1995)
Comm. Pure Appl. Math.
, vol.48
, pp. 235-276
-
-
Jin, S.1
Xin, Z.2
-
19
-
-
0003261490
-
Hyperbolic systems of conservation laws and the mathematical theory of shock waves
-
SIAM, Philadelphia, PA
-
P. D. LAX, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, CBMS-NSF Reg. Conf. Ser. in Appl. Math. 11, SIAM, Philadelphia, PA, 1973.
-
(1973)
CBMS-NSF Reg. Conf. Ser. in Appl. Math.
, vol.11
-
-
Lax, P.D.1
-
20
-
-
84968504658
-
Nonlinear stability of shock waves for viscous conservation laws
-
T.-P. LIU, Nonlinear stability of shock waves for viscous conservation laws, Mem. Amer. Math. Soc., 56 (1985).
-
(1985)
Mem. Amer. Math. Soc.
, vol.56
-
-
Liu, T.-P.1
-
21
-
-
0001733359
-
The stability of multi- Dimensional shock fronts-a new problem for linear hyperbolic equations
-
A. MAJDA, The stability of multi- dimensional shock fronts-a new problem for linear hyperbolic equations, Mem. Amer. Math. Soc., 275 (1983).
-
(1983)
Mem. Amer. Math. Soc.
, vol.275
-
-
Majda, A.1
-
22
-
-
0001733358
-
The existence of multi-dimensional shock fronts
-
A. MAJDA, The existence of multi-dimensional shock fronts, Mem. Amer. Math. Soc., 281 (1983).
-
(1983)
Mem. Amer. Math. Soc.
, vol.281
-
-
Majda, A.1
-
24
-
-
0013040387
-
Pointwise Green's function bounds and stability of relaxation shocks
-
C. MASCIA AND K. ZUMBRUN, Pointwise Green's function bounds and stability of relaxation shocks, Indiana Univ. Math. J., 51 (2002), pp. 773-904.
-
(2002)
Indiana Univ. Math. J.
, vol.51
, pp. 773-904
-
-
Mascia, C.1
Zumbrun, K.2
-
25
-
-
2942554868
-
Stability of small-amplitude shock profiles of symmetric hyperbolic-parabolic systems
-
C. MASCIA AND K. ZUMBRUN, Stability of small-amplitude shock profiles of symmetric hyperbolic-parabolic systems, Comm. Pure Appl. Math., 57 (2004), pp. 841-876.
-
(2004)
Comm. Pure Appl. Math.
, vol.57
, pp. 841-876
-
-
Mascia, C.1
Zumbrun, K.2
-
26
-
-
0141957447
-
Pointwise Green function bounds for shock profiles of systems with real viscosity
-
C. MASCIA AND K. ZUMBRUN, Pointwise Green function bounds for shock profiles of systems with real viscosity, Arch. Ration. Mech. Anal., 169 (2003), pp. 177-263.
-
(2003)
Arch. Ration. Mech. Anal.
, vol.169
, pp. 177-263
-
-
Mascia, C.1
Zumbrun, K.2
-
27
-
-
2142763786
-
Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems
-
C. MASCIA AND K. ZUMBRUN, Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic systems, Arch. Ration. Mech. Anal., 172 (2004), pp. 93-131.
-
(2004)
Arch. Ration. Mech. Anal.
, vol.172
, pp. 93-131
-
-
Mascia, C.1
Zumbrun, K.2
-
28
-
-
2942657954
-
An Evans function approach to spectral stability of small-amplitude viscous shock profiles
-
R. PLAZA AND K. ZUMBRUN, An Evans function approach to spectral stability of small-amplitude viscous shock profiles, Discrete Contin. Dyn. Syst., 10 (2004), pp. 885-924.
-
(2004)
Discrete Contin. Dyn. Syst.
, vol.10
, pp. 885-924
-
-
Plaza, R.1
Zumbrun, K.2
-
30
-
-
84972513592
-
Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation
-
Y. SHIZUTA AND S. KAWASHIMA, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), pp. 249-275.
-
(1985)
Hokkaido Math. J.
, vol.14
, pp. 249-275
-
-
Shizuta, Y.1
Kawashima, S.2
-
32
-
-
0003342626
-
Linear and nonlinear waves
-
Wiley-Interscience, New York, London, Sidney
-
G. B. WHITHAM, Linear and Nonlinear Waves, Pure Appl. Math., Wiley-Interscience, New York, London, Sidney, 1974.
-
(1974)
Pure Appl. Math.
-
-
Whitham, G.B.1
-
33
-
-
0141638971
-
Basic properties of hyperbolic relaxation systems
-
Birkhäuser Boston, Boston
-
W.-A. YONG, Basic Properties of Hyperbolic Relaxation Systems, Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, 2001.
-
(2001)
Progr. Nonlinear Differential Equations Appl.
-
-
Yong, W.-A.1
-
34
-
-
0033651723
-
Existence of relaxation shock profiles for hyperbolic conservation laws
-
W.-A. YONG AND K. ZUMBRUN, Existence of relaxation shock profiles for hyperbolic conservation laws, SIAM J. Appl. Math., 60 (2000), pp. 1565-1575.
-
(2000)
SIAM J. Appl. Math.
, vol.60
, pp. 1565-1575
-
-
Yong, W.-A.1
Zumbrun, K.2
-
35
-
-
0033275052
-
Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation
-
Y. ZENG, Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation, Arch. Ration. Mech. Anal., 150 (1999), pp. 225-279.
-
(1999)
Arch. Ration. Mech. Anal.
, vol.150
, pp. 225-279
-
-
Zeng, Y.1
-
36
-
-
0011608194
-
Stability of viscous shock waves
-
Indiana University
-
K. ZUMBRUN. Stability of Viscous Shock Waves, lecture notes, Indiana University, 1998.
-
(1998)
Lecture Notes
-
-
Zumbrun, K.1
-
37
-
-
0037804971
-
Refined wave-tracking and nonlinear stability of viscous Lax shocks
-
K. ZUMBRUN, Refined wave-tracking and nonlinear stability of viscous Lax shocks, Methods. Appl. Anal., 7 (2000), pp. 747-768.
-
(2000)
Methods. Appl. Anal.
, vol.7
, pp. 747-768
-
-
Zumbrun, K.1
-
38
-
-
0001385446
-
Multidimensional stability of planar viscous shock waves
-
Advances in the Theory of Shock Waves, Birkhäuser Boston, Boston, MA
-
K. ZUMBRUN, Multidimensional stability of planar viscous shock waves, in Advances in the Theory of Shock Waves, Progr. Nonlinear Differential Equations Appl. 47, Birkhäuser Boston, Boston, MA, 2001, pp. 307-516.
-
(2001)
Progr. Nonlinear Differential Equations Appl.
, vol.47
, pp. 307-516
-
-
Zumbrun, K.1
-
39
-
-
33646545482
-
Planar stability conditions for large-amplitude viscous shock profiles
-
CIME, Cetraro, Italy
-
K. ZUMBRUN, Planar Stability Conditions for Large-Amplitude Viscous Shock Profiles, lecture notes, CIME, Cetraro, Italy, 2003.
-
(2003)
Lecture Notes
-
-
Zumbrun, K.1
-
40
-
-
33646592353
-
Stability of large-amplitude viscous shock profiles of the equations of fluid dynamics
-
Elsevier, to appear
-
K. ZUMBRUN, Stability of large-amplitude viscous shock profiles of the equations of fluid dynamics, in Handbook of Fluids, Elsevier, to appear.
-
Handbook of Fluids
-
-
Zumbrun, K.1
-
41
-
-
0009378734
-
Pointwise semigroup methods and stability of viscous shock waves
-
K. ZUMBRUN AND P.HOWARD, Pointwise semigroup methods and stability of viscous shock waves, Indiana Univ. Math. J., 47 (1998), pp. 741-871.
-
(1998)
Indiana Univ. Math. J.
, vol.47
, pp. 741-871
-
-
Zumbrun, K.1
Howard, P.2
-
42
-
-
0001028485
-
Viscous and inviscid stability of multidimensional planar shock fronts
-
K. ZUMBRUN AND D. SERRE, Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. J., 48 (1999), pp. 937-992.
-
(1999)
Indiana Univ. Math. J.
, vol.48
, pp. 937-992
-
-
Zumbrun, K.1
Serre, D.2
|