-
1
-
-
0035538197
-
Altemate Evans functions and viscous shock waves
-
Benzoni-Gavage, S.; Serre, D.; Zumbrun K. Altemate Evans functions and viscous shock waves. SIAM J. Math. Anal. 32 (2001), no. 5, 929-962.
-
(2001)
SIAM J. Math. Anal.
, vol.32
, Issue.5
, pp. 929-962
-
-
Benzoni-Gavage, S.1
Serre, D.2
Zumbrun, K.3
-
2
-
-
84980156126
-
On the structure of magnetohydrodynamic shock waves
-
Conley, C.; Smoller, J. On the structure of magnetohydrodynamic shock waves. Comm. Pure Appl. Math. 27 (1974), 367-375.
-
(1974)
Comm. Pure Appl. Math.
, vol.27
, pp. 367-375
-
-
Conley, C.1
Smoller, J.2
-
3
-
-
0001507522
-
Stability of step shocks
-
Erpenbeck, J. J. Stability of step shocks. Phys. Fluids 5 (1962), no. 10, 1181-1187.
-
(1962)
Phys. Fluids
, vol.5
, Issue.10
, pp. 1181-1187
-
-
Erpenbeck, J.J.1
-
4
-
-
33744770678
-
Small amplitude intermediate magnetohydrodynamic shock waves
-
Freistühler, H. Small amplitude intermediate magnetohydrodynamic shock waves. Phys. Scripta T74 (1998), 26-29.
-
(1998)
Phys. Scripta
, vol.T74
, pp. 26-29
-
-
Freistühler, H.1
-
6
-
-
0003752113
-
-
Unpublished notes, Institut für Mathematik, RWTH Aachen, Germany, February
-
Freistühler, H.; Zumbrun, K. Examples of unstable viscous shock waves. Unpublished notes, Institut für Mathematik, RWTH Aachen, Germany, February 1998.
-
(1998)
Examples of Unstable Viscous Shock Waves
-
-
Freistühler, H.1
Zumbrun, K.2
-
7
-
-
0000697564
-
Nonlinear asymptotic stability of general small-amplitude viscous Laxian shock waves
-
Fries, C. Nonlinear asymptotic stability of general small-amplitude viscous Laxian shock waves. J. Differential Equations 146 (1998), no. 1, 185-202.
-
(1998)
J. Differential Equations
, vol.146
, Issue.1
, pp. 185-202
-
-
Fries, C.1
-
8
-
-
0034384332
-
Stability of viscous shock waves associated with non-convex modes
-
Fries, C. Stability of viscous shock waves associated with non-convex modes. Arch. Ration. Mech. Anal. 152 (2000), no. 2, 141-186.
-
(2000)
Arch. Ration. Mech. Anal.
, vol.152
, Issue.2
, pp. 141-186
-
-
Fries, C.1
-
9
-
-
0040942605
-
The gap lemma and geometric criteria for instability of viscous shock profiles
-
Gardner, R. A.; Zumbrun, K. The gap lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math. 51 (1998), no. 7, 797-855.
-
(1998)
Comm. Pure Appl. Math.
, vol.51
, Issue.7
, pp. 797-855
-
-
Gardner, R.A.1
Zumbrun, K.2
-
10
-
-
0000716762
-
The existence and limit behavior of the one-dimensional shock layer
-
Gilbarg, D. The existence and limit behavior of the one-dimensional shock layer. Amer. J. Math. 73 (1951), 256-274.
-
(1951)
Amer. J. Math.
, vol.73
, pp. 256-274
-
-
Gilbarg, D.1
-
11
-
-
0022865466
-
Nonlinear asymptotic stability of viscous shock profiles for conservation laws
-
Goodman, J. Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal. 95 (1986), no. 4, 325-344.
-
(1986)
Arch. Rational Mech. Anal.
, vol.95
, Issue.4
, pp. 325-344
-
-
Goodman, J.1
-
12
-
-
0001054919
-
Remarks on the stability of viscous shock waves
-
SIAM, Philadelphia
-
Goodman, J. Remarks on the stability of viscous shock waves. Viscous profiles and numerical methods for shock waves (Raleigh, NC, 1990), 66-72. SIAM, Philadelphia, 1991.
-
(1991)
Viscous Profiles and Numerical Methods for Shock Waves (Raleigh, NC, 1990)
, pp. 66-72
-
-
Goodman, J.1
-
13
-
-
0000591519
-
Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow
-
Hoff, D.; Zumbrun, K. Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ. Math. J. 44 (1995), no. 2, 603-676.
-
(1995)
Indiana Univ. Math. J.
, vol.44
, Issue.2
, pp. 603-676
-
-
Hoff, D.1
Zumbrun, K.2
-
15
-
-
0034365529
-
Pointwise estimates for dispersive-diffusive shock waves
-
Howard, P.; Zumbrun, K. Pointwise estimates for dispersive-diffusive shock waves. Arch. Rational Mech. Anal. 155 (2000), no. 2, 85-169.
-
(2000)
Arch. Rational Mech. Anal.
, vol.155
, Issue.2
, pp. 85-169
-
-
Howard, P.1
Zumbrun, K.2
-
16
-
-
0036003028
-
Spectral stability of small-amplitude shock profiles for dissipative symmetric hyperbolic-parabolic systems
-
Humpherys, J.; Zumbrun, K. Spectral stability of small-amplitude shock profiles for dissipative symmetric hyperbolic-parabolic systems. Z. Angew. Math. Phys. 53 (2002), no. 1, 20-34.
-
(2002)
Z. Angew. Math. Phys.
, vol.53
, Issue.1
, pp. 20-34
-
-
Humpherys, J.1
Zumbrun, K.2
-
17
-
-
0000416468
-
A model system of equations for the one-dimensional motion of a gas
-
Kanel', Ja. I. A model system of equations for the one-dimensional motion of a gas. Differencial'nye Uravnenija 4 (1968), 721-734.
-
(1968)
Differencial'nye Uravnenija
, vol.4
, pp. 721-734
-
-
Kanel, Ja.I.1
-
18
-
-
0001758791
-
Stability of weak shocks in λ.-ω systems
-
Kapitula, T. Stability of weak shocks in λ.-ω systems. Indiana Univ. Math. J. 40 (1991), no. 4, 1193-1219.
-
(1991)
Indiana Univ. Math. J.
, vol.40
, Issue.4
, pp. 1193-1219
-
-
Kapitula, T.1
-
21
-
-
34250115323
-
Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion
-
Kawashima, S.; Matsumura, A. Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Comm. Math. Phys. 101 (1985), no. 1, 97-127.
-
(1985)
Comm. Math. Phys.
, vol.101
, Issue.1
, pp. 97-127
-
-
Kawashima, S.1
Matsumura, A.2
-
22
-
-
0011608808
-
Asymptotic behavior of solutions for the equations of a viscous heat-conductive gas
-
Kawashima, S.; Matsumura, A.; Nishihara, K. Asymptotic behavior of solutions for the equations of a viscous heat-conductive gas. Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), no. 7, 249-252.
-
(1986)
Proc. Japan Acad. Ser. A Math. Sci.
, vol.62
, Issue.7
, pp. 249-252
-
-
Kawashima, S.1
Matsumura, A.2
Nishihara, K.3
-
24
-
-
0001513936
-
The Riemann problem for general systems of conservation laws
-
Liu, T.-P. The Riemann problem for general systems of conservation laws. J. Differential Equations 18 (1975), 218-234.
-
(1975)
J. Differential Equations
, vol.18
, pp. 218-234
-
-
Liu, T.-P.1
-
25
-
-
84990557244
-
Shock waves for compressible Navier-Stokes equations are stable
-
Liu, T.-P. Shock waves for compressible Navier-Stokes equations are stable. Comm. Pure Appl. Math. 39 (1986), no. 5, 565-594.
-
(1986)
Comm. Pure Appl. Math.
, vol.39
, Issue.5
, pp. 565-594
-
-
Liu, T.-P.1
-
26
-
-
0031531481
-
Pointwise convergence to shock waves for viscous conservation laws
-
Liu, T.-P. Pointwise convergence to shock waves for viscous conservation laws. Comm. Pure Appl. Math. 50(1997), no. 11, 1113-1182.
-
(1997)
Comm. Pure Appl. Math.
, vol.50
, Issue.11
, pp. 1113-1182
-
-
Liu, T.-P.1
-
27
-
-
0030642440
-
Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws
-
Liu, T.-P.; Zeng, Y. Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws. Mem. Amer. Math. Soc. 125 (1997), no. 599.
-
(1997)
Mem. Amer. Math. Soc.
, vol.125
, Issue.599
-
-
Liu, T.-P.1
Zeng, Y.2
-
28
-
-
2942515299
-
-
Private communication, September (manuscript in preparation)
-
Liu, T.-P.; Zeng, Y. Private communication, September 2001 (manuscript in preparation).
-
(2001)
-
-
Liu, T.-P.1
Zeng, Y.2
-
29
-
-
21844524592
-
Nonlinear stability of an undercompressive shock for complex Burgers equation
-
Liu, T.-P.; Zumbrun, K. Nonlinear stability of an undercompressive shock for complex Burgers equation. Comm. Math. Phys. 168 (1995), no. 1, 163-186.
-
(1995)
Comm. Math. Phys.
, vol.168
, Issue.1
, pp. 163-186
-
-
Liu, T.-P.1
Zumbrun, K.2
-
30
-
-
0041127884
-
On nonlinear stability of general undercompressive viscous shock waves
-
Liu, T.-P.; Zumbrun, K. On nonlinear stability of general undercompressive viscous shock waves. Comm. Math. Phys. 174 (1995), no. 2, 319-345.
-
(1995)
Comm. Math. Phys.
, vol.174
, Issue.2
, pp. 319-345
-
-
Liu, T.-P.1
Zumbrun, K.2
-
31
-
-
0003204261
-
The existence of multidimensional shock fronts
-
Majda, A. The existence of multidimensional shock fronts. Mem. Amer. Math. Soc. 43 (1983), no. 281.
-
(1983)
Mem. Amer. Math. Soc.
, vol.43
, Issue.281
-
-
Majda, A.1
-
32
-
-
0003204263
-
The stability of multidimensional shock fronts
-
Majda, A. The stability of multidimensional shock fronts. Mem. Amer. Math. Soc. 41 (1983), no. 275.
-
(1983)
Mem. Amer. Math. Soc.
, vol.41
, Issue.275
-
-
Majda, A.1
-
34
-
-
0002124586
-
Stable viscosity matrices for systems of conservation laws
-
Majda, A.; Pego, R. Stable viscosity matrices for systems of conservation laws. J. Differential Equations 56 (1985), no. 2, 229-262.
-
(1985)
J. Differential Equations
, vol.56
, Issue.2
, pp. 229-262
-
-
Majda, A.1
Pego, R.2
-
35
-
-
0013040387
-
Pointwise Green's function bounds and stability of relaxation shocks
-
Mascia, C.; Zumbrun, K. Pointwise Green's function bounds and stability of relaxation shocks. Indiana Univ. Math. J. 51 (2002), no. 4, 773-904.
-
(2002)
Indiana Univ. Math. J.
, vol.51
, Issue.4
, pp. 773-904
-
-
Mascia, C.1
Zumbrun, K.2
-
36
-
-
0141957447
-
Pointwise Green function bounds for shock profiles of systems with real viscosity
-
Mascia, C.; Zumbrun, K. Pointwise Green function bounds for shock profiles of systems with real viscosity. Arch. Ration. Mech. Anal. 169 (2003), no. 3, 177-263.
-
(2003)
Arch. Ration. Mech. Anal.
, vol.169
, Issue.3
, pp. 177-263
-
-
Mascia, C.1
Zumbrun, K.2
-
37
-
-
2142763786
-
Stability of large amplitude viscous shock profiles of hyperbolic-parabolic systems
-
to appear
-
Mascia, C.; Zumbrun, K. Stability of large amplitude viscous shock profiles of hyperbolic-parabolic systems. Arch. Ration. Mech. Anal., to appear.
-
Arch. Ration. Mech. Anal.
-
-
Mascia, C.1
Zumbrun, K.2
-
38
-
-
0001923997
-
On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas
-
Matsumura, A.; Nishihara, K. On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas. Japan J. Appl. Math. 2 (1985), no. 1, 17-25.
-
(1985)
Japan J. Appl. Math.
, vol.2
, Issue.1
, pp. 17-25
-
-
Matsumura, A.1
Nishihara, K.2
-
39
-
-
0039289498
-
Stable viscosities and shock profiles for systems of conservation laws
-
Pego, R. L. Stable viscosities and shock profiles for systems of conservation laws. Trans. Amer. Math. Soc. 282 (1984), no. 2, 749-763.
-
(1984)
Trans. Amer. Math. Soc.
, vol.282
, Issue.2
, pp. 749-763
-
-
Pego, R.L.1
-
40
-
-
0000814275
-
On the stability of waves of nonlinear parabolic systems
-
Sattinger, D. On the stability of waves of nonlinear parabolic systems. Advances in Math. 22 (1976), no. 3, 312-355.
-
(1976)
Advances in Math.
, vol.22
, Issue.3
, pp. 312-355
-
-
Sattinger, D.1
-
41
-
-
0035536781
-
Boundary layer stability in real-vanishing viscosity limit
-
Serre, D.; Zumbrun, K. Boundary layer stability in real-vanishing viscosity limit. Comm. Math. Phys. 221 (2001), no. 2, 267-292.
-
(2001)
Comm. Math. Phys.
, vol.221
, Issue.2
, pp. 267-292
-
-
Serre, D.1
Zumbrun, K.2
-
42
-
-
84972513592
-
Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation
-
Shizuta, Y.; Kawashima, S. Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14 (1985), no. 2, 249-275.
-
(1985)
Hokkaido Math. J.
, vol.14
, Issue.2
, pp. 249-275
-
-
Shizuta, Y.1
Kawashima, S.2
-
44
-
-
84990671435
-
1 asymptotic behavior of compressible, isentropic, viscous 1-d flow
-
1 asymptotic behavior of compressible, isentropic, viscous 1-d flow. Comm. Pure Appl. Math. 47 (1994), no. 8, 1053-1082.
-
(1994)
Comm. Pure Appl. Math.
, vol.47
, Issue.8
, pp. 1053-1082
-
-
Zeng, Y.1
-
45
-
-
0033275052
-
Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation
-
Zeng, Y. Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation. Arch. Ration. Mech. Anal. 150 (1999), no. 3, 225-279.
-
(1999)
Arch. Ration. Mech. Anal.
, vol.150
, Issue.3
, pp. 225-279
-
-
Zeng, Y.1
-
46
-
-
0011608194
-
Stability of viscous shock waves
-
Indiana University, Bloomington
-
Zumbrun, K. Stability of viscous shock waves. Lecture notes, Indiana University, Bloomington, 1998.
-
(1998)
Lecture Notes
-
-
Zumbrun, K.1
-
47
-
-
0037804971
-
Refined wave-tracking and nonlinear stability of viscous Lax shocks
-
Zumbrun, K. Refined wave-tracking and nonlinear stability of viscous Lax shocks. Methods Appl. Anal. 7 (2000), no. 4, 747-768.
-
(2000)
Methods Appl. Anal.
, vol.7
, Issue.4
, pp. 747-768
-
-
Zumbrun, K.1
-
48
-
-
0001385446
-
Multidimensional stability of planar viscous shock waves
-
Progress in Nonlinear Differential Equations and Their Applications, 47. Birkhäuser, Boston
-
Zumbrun, K. Multidimensional stability of planar viscous shock waves. Advances in the theory of shock waves, 307-516. Progress in Nonlinear Differential Equations and Their Applications, 47. Birkhäuser, Boston, 2001.
-
(2001)
Advances in the Theory of Shock Waves
, pp. 307-516
-
-
Zumbrun, K.1
-
49
-
-
13544269631
-
Stability of large-amplitude shock waves of compressible Navier-Stokes equations
-
Preprint, to appear
-
Zumbrun, K. Stability of large-amplitude shock waves of compressible Navier-Stokes equations. Preprint, 2003. Handbook of fluid dynamics, to appear.
-
(2003)
Handbook of Fluid Dynamics
-
-
Zumbrun, K.1
-
50
-
-
50249151749
-
Planar stability criteria for viscous shock waves of systems with real viscosity
-
Preprint
-
Zumbrun, K. Planar stability criteria for viscous shock waves of systems with real viscosity. CIME summer school notes. Preprint, 2004.
-
(2004)
CIME Summer School Notes
-
-
Zumbrun, K.1
-
51
-
-
0009378734
-
Pointwise semigroup methods and stability of viscous shock waves
-
Zumbrun, K.; Howard, P. Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J. 47 (1998), no. 3, 741-871.
-
(1998)
Indiana Univ. Math. J.
, vol.47
, Issue.3
, pp. 741-871
-
-
Zumbrun, K.1
Howard, P.2
-
52
-
-
0001028485
-
Viscous and inviscid stability of multidimensional planar shock fronts
-
Zumbrun, K.; Serre, D. Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ. Math. J. 48 (1999), no. 3, 937-992.
-
(1999)
Indiana Univ. Math. J.
, vol.48
, Issue.3
, pp. 937-992
-
-
Zumbrun, K.1
Serre, D.2
|