-
1
-
-
0031473639
-
Quasi-planar graphs have a linear number of edges
-
P. K. Agarwal, B. Aronov, J. Pach, R. Pollack, and M. Sharir, Quasi-planar graphs have a linear number of edges, Combinatorica 17 (1997), 1-9.
-
(1997)
Combinatorica
, vol.17
, pp. 1-9
-
-
Agarwal, P.K.1
Aronov, B.2
Pach, J.3
Pollack, R.4
Sharir, M.5
-
2
-
-
0042825604
-
Geometric graph theory
-
(J. D. Lamb and D. A. Preece, eds.), London Mathematical Society Lecture Notes 267, Cambridge University Press, Cambridge
-
J. Pach, Geometric graph theory, in: Surveys in Combinatorics, 1999 (J. D. Lamb and D. A. Preece, eds.), London Mathematical Society Lecture Notes 267, Cambridge University Press, Cambridge, 1999, 167-200.
-
(1999)
Surveys in Combinatorics, 1999
, pp. 167-200
-
-
Pach, J.1
-
3
-
-
35248876314
-
Relaxing planarity for topological graphs
-
(J. Akiyama, M. Kano, eds.), Lecture Notes in Computer Science 2866, Springer-Verlag, Berlin
-
J. Pach, R. Radoičić, and G. Tóth, Relaxing planarity for topological graphs, in: Discrete and Computational Geometry (J. Akiyama, M. Kano, eds.), Lecture Notes in Computer Science 2866, Springer-Verlag, Berlin, 2003, 221-232.
-
(2003)
Discrete and Computational Geometry
, pp. 221-232
-
-
Pach, J.1
Radoičić, R.2
Tóth, G.3
-
4
-
-
12944258249
-
A generalization of quasi-planarity
-
(J. Pach, ed.), Contemporary Mathematics 342, AMS
-
J. Pach, R. Radoičić, and G. Tóth: A generalization of quasi-planarity in: Towards a Theory of Geometric Graphs, (J. Pach, ed.), Contemporary Mathematics 342, AMS, 2004, 177-183.
-
(2004)
Towards A Theory of Geometric Graphs
, pp. 177-183
-
-
Pach, J.1
Radoičić, R.2
Tóth, G.3
-
6
-
-
84867469663
-
Geometric graphs with no self-intersecting path of length three
-
M. T. Goodrich, S. G. Kobourov, eds., Lecture Notes in Computer Science 2528, Springer-Verlag, Berlin
-
J. Pach, R. Pinchasi, G. Tardos, and G. Tóth, Geometric graphs with no self-intersecting path of length three, in: Graph Drawing (M. T. Goodrich, S. G. Kobourov, eds.), Lecture Notes in Computer Science 2528, Springer-Verlag, Berlin, 2002, 295-311.
-
(2002)
Graph Drawing
, pp. 295-311
-
-
Pach, J.1
Pinchasi, R.2
Tardos, G.3
Tóth, G.4
-
7
-
-
4544385055
-
Improving the Crossing Lemma by finding more crossings in sparse graphs
-
J. Pach, R. Radoic̊ić, G. Tardos, and G. Tóth, Improving the Crossing Lemma by finding more crossings in sparse graphs, Proceedings of the 20th Annual Symposium on Computational Geometry (SoCG 2004), 2004, 76-85.
-
(2004)
Proceedings of the 20th Annual Symposium on Computational Geometry (SoCG 2004)
, pp. 76-85
-
-
Pach, J.1
Radoic̊ić, R.2
Tardos, G.3
Tóth, G.4
-
8
-
-
0031455815
-
Graphs drawn with few crossings per edge
-
J. Pach and G. Tóth, Graphs drawn with few crossings per edge, Combinatorica 17 (1997), 427-439.
-
(1997)
Combinatorica
, vol.17
, pp. 427-439
-
-
Pach, J.1
Tóth, G.2
|