-
1
-
-
0031473639
-
Quasi-planar graphs have a linear number of edges
-
Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs have a linear number of edges. Combinatorica 17, 1-9 (1997)
-
(1997)
Combinatorica
, vol.17
, pp. 1-9
-
-
Agarwal, P.K.1
Aronov, B.2
Pach, J.3
Pollack, R.4
Sharir, M.5
-
2
-
-
0347434112
-
A Turán-type extremal theory of convex geometric graphs
-
Discrete and Computational Geometry - The Goodman-Pollack Festschrift, B. Aronov et al., (eds.), Springer, Berlin
-
Braß, P., Károlyi, G., Valtr, P.: A Turán-type extremal theory of convex geometric graphs. In: Discrete and Computational Geometry - The Goodman-Pollack Festschrift, B. Aronov et al., (eds.), Algorithms and Combinatorics 25, Springer, Berlin, 2003, pp. 275-300
-
(2003)
Algorithms and Combinatorics
, vol.25
, pp. 275-300
-
-
Braß, P.1
Károlyi, G.2
Valtr, P.3
-
3
-
-
0042825604
-
Geometric graph theory
-
Surveys in Combinatorics, 1999, J.D. Lamb, D.A. Preece, (eds.), Cambridge University Press, Cambridge
-
Pach, J.: Geometric graph theory. In: Surveys in Combinatorics, 1999, J.D. Lamb, D.A. Preece, (eds.), London Mathematical Society Lecture Notes 267, Cambridge University Press, Cambridge, 1999, pp. 167-200
-
(1999)
London Mathematical Society Lecture Notes
, vol.267
, pp. 167-200
-
-
Pach, J.1
-
4
-
-
35248876314
-
Relaxing planarity for topological graphs
-
Discrete and Computational Geometry, J. Akiyama, M. Kano (eds.), Springer, Berlin
-
Pach, J., Radoičić, R., Tóth, G.: Relaxing planarity for topological graphs. In: Discrete and Computational Geometry, J. Akiyama, M. Kano (eds.), Lecture Notes in Computer Science 2866 Springer, Berlin, 2003, 221-232
-
(2003)
Lecture Notes in Computer Science
, vol.2866
, pp. 221-232
-
-
Pach, J.1
Radoičić, R.2
Tóth, G.3
-
5
-
-
12944258249
-
A generalization of quasi-planarity
-
Towards a Theory of Geometric Graphs, J. Pach (ed.), AMS
-
Pach, J., Radoičić, R., Tóth, G.: A generalization of quasi-planarity. In: Towards a Theory of Geometric Graphs, J. Pach (ed.), Contemporary Mathematics 342, AMS, 2004, 177-183
-
(2004)
Contemporary Mathematics
, vol.342
, pp. 177-183
-
-
Pach, J.1
Radoičić, R.2
Tóth, G.3
-
6
-
-
84867469663
-
Geometric graphs with no self-intersecting path of length three
-
Graph Drawing, M.T. Goodrich, S.G. Kobourov (eds.), Springer, Berlin
-
Pach, J., Pinchasi, R., Tardos, G., Tóth, G.: Geometric graphs with no self-intersecting path of length three. In: Graph Drawing, M.T. Goodrich, S.G. Kobourov (eds.), Lecture Notes in Computer Science 2528, Springer, Berlin, 2002, pp. 295-311.
-
(2002)
Lecture Notes in Computer Science
, vol.2528
, pp. 295-311
-
-
Pach, J.1
Pinchasi, R.2
Tardos, G.3
Tóth, G.4
-
8
-
-
0031455815
-
Graphs drawn with few crossings per edge
-
Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17, 427-439 (1997)
-
(1997)
Combinatorica
, vol.17
, pp. 427-439
-
-
Pach, J.1
Tóth, G.2
|