메뉴 건너뛰기




Volumn 3720 LNAI, Issue , 2005, Pages 218-229

Learning from positive and unlabeled examples with different data distributions

Author keywords

[No Author keywords available]

Indexed keywords

DATABASE SYSTEMS; PRINTERS (COMPUTER); PROBLEM SOLVING; WEBSITES;

EID: 33646415640     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11564096_24     Document Type: Conference Paper
Times cited : (103)

References (25)
  • 2
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • Blum A. and Mitchell T. 1998. Combining labeled and unlabeled data with co-training. COLT-98.
    • (1998) COLT-98
    • Blum, A.1    Mitchell, T.2
  • 3
    • 9444244214 scopus 로고    scopus 로고
    • Exploiting relations among concepts to acquire weakly labeled training data
    • Bockhorst J. and Craven M. 2002. Exploiting relations among concepts to acquire weakly labeled training data. ICML-2002.
    • (2002) ICML-2002
    • Bockhorst, J.1    Craven, M.2
  • 4
    • 14344258245 scopus 로고    scopus 로고
    • A needle in a haystack: Local one-class optimization
    • Crammer K., Chechik G. 2004. A needle in a haystack: local one-class optimization, ICML-2004.
    • (2004) ICML-2004
    • Crammer, K.1    Chechik, G.2
  • 6
    • 84961317343 scopus 로고    scopus 로고
    • PAC learning from positive statistical queries
    • 1998
    • Denis F. 1998. PAC learning from positive statistical queries. ALT-98, pages 112-126. 1998.
    • (1998) ALT-98 , pp. 112-126
    • Denis, F.1
  • 7
    • 0007950880 scopus 로고    scopus 로고
    • Enhancing supervised learning with unlabeled data
    • Goldman S., Zhou Y. 2000. Enhancing supervised learning with unlabeled data. ICML-2000.
    • (2000) ICML-2000
    • Goldman, S.1    Zhou, Y.2
  • 8
    • 14344250636 scopus 로고    scopus 로고
    • Authorship verification as a one-class classification problem
    • Koppel M. and Schier J. 2004. Authorship Verification as a one-class classification problem, ICML-2004.
    • (2004) ICML-2004
    • Koppel, M.1    Schier, J.2
  • 9
    • 1942516926 scopus 로고    scopus 로고
    • Learning with positive and unlabeled examples using weighted logistic regression
    • Lee W., Liu B. 2003. "Learning with positive and unlabeled examples using weighted logistic regression. ICML-2003.
    • (2003) ICML-2003
    • Lee, W.1    Liu, B.2
  • 10
    • 85013879626 scopus 로고
    • A sequential algorithm for training text classifiers
    • Lewis D. and Gale W. 1994. A sequential algorithm for training text classifiers. SIGIR-1994.
    • (1994) SIGIR-1994
    • Lewis, D.1    Gale, W.2
  • 11
    • 84880798303 scopus 로고    scopus 로고
    • Learning to classify text using positive and unlabeled data
    • Li X., Liu B. 2003. Learning to classify text using positive and unlabeled data. IJCAI-2003.
    • (2003) IJCAI-2003
    • Li, X.1    Liu, B.2
  • 12
    • 0742311711 scopus 로고    scopus 로고
    • Partially supervised classification of text documents
    • Liu B., Lee W., Yu P., and Li X. 2002. Partially supervised classification of text documents. ICML-2002.
    • (2002) ICML-2002
    • Liu, B.1    Lee, W.2    Yu, P.3    Li, X.4
  • 13
    • 78149306870 scopus 로고    scopus 로고
    • Building text classifiers using positive and unlabeled examples
    • Liu B., Dai Y., Li X., Lee W., and Yu P. 2003. Building text classifiers using positive and unlabeled examples. ICDM-2003.
    • (2003) ICDM-2003
    • Liu, B.1    Dai, Y.2    Li, X.3    Lee, W.4    Yu, P.5
  • 14
    • 0003223784 scopus 로고    scopus 로고
    • Multi-label text classification with a mixture model trained by em
    • McCallum A. 1999. Multi-label text classification with a mixture model trained by EM. In AAAI99 Workshop on Text Learning.
    • (1999) AAAI99 Workshop on Text Learning
    • McCallum, A.1
  • 15
    • 1942514815 scopus 로고    scopus 로고
    • Learning from the positive data
    • 2001
    • Muggleton S. 2001. Learning from the positive data. Machine Learning, 2001.
    • (2001) Machine Learning
    • Muggleton, S.1
  • 16
  • 18
    • 10644286224 scopus 로고    scopus 로고
    • Cross-training: Learning probabilistic mappings between topics
    • Sarawagi S., Chakrabarti S. and Godbole S. 2003, Cross-training: learning probabilistic mappings between topics. KDD-2003.
    • (2003) KDD-2003
    • Sarawagi, S.1    Chakrabarti, S.2    Godbole, S.3
  • 19
    • 0038091288 scopus 로고    scopus 로고
    • Estimating the support of a high-dimensional distribution
    • Microsoft Research, 1999
    • Scholkopf B., Platt J., Shawe J., Smola A. and Williamson R. 1999. Estimating the support of a high-dimensional distribution. Technical Report MSR-TR-99-87, Microsoft Research, 1999.
    • (1999) Technical Report , vol.MSR-TR-99-87
    • Scholkopf, B.1    Platt, J.2    Shawe, J.3    Smola, A.4    Williamson, R.5
  • 21
    • 14344266561 scopus 로고    scopus 로고
    • Improving SVM accuracy by training on auxiliary data sources
    • Wu P., Dietterich T., G. 2004. Improving SVM accuracy by training on auxiliary data sources, ICML-2004.
    • (2004) ICML-2004
    • Wu, P.1    Dietterich, T.G.2
  • 22
    • 85024373635 scopus 로고    scopus 로고
    • A re-examination of text categorization methods
    • Yang Y. and Liu X. 1999. A re-examination of text categorization methods. SIGIR-1999.
    • (1999) SIGIR-1999
    • Yang, Y.1    Liu, X.2
  • 23
    • 0011399035 scopus 로고    scopus 로고
    • PEBL: Positive example based learning for Web page classification using SVM
    • Yu H., Han J., and Chang K. 2002. PEBL: Positive example based learning for Web page classification using SVM. KDD-2002.
    • (2002) KDD-2002
    • Yu, H.1    Han, J.2    Chang, K.3
  • 24
    • 77949278961 scopus 로고    scopus 로고
    • General MC: Estimating boundary of positive class from small positive data
    • Yu H. 2003. General MC: Estimating boundary of positive class from small positive data. ICDM-2003.
    • (2003) ICDM-2003
    • Yu, H.1
  • 25
    • 33646406963 scopus 로고    scopus 로고
    • Improving short text classification using unlabeled background knowledge to assess document similarity
    • Zelikovitz S. and Hirsh H. 2000. Improving short text classification using unlabeled background knowledge to assess document similarity, ICML-2000.
    • (2000) ICML-2000
    • Zelikovitz, S.1    Hirsh, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.