-
1
-
-
0001089823
-
Support vector clustering
-
A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik. Support vector clustering. Journal of Machine Learning Research, 2(2):125-137, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.2
, Issue.2
, pp. 125-137
-
-
Ben-Hur, A.1
Horn, D.2
Siegelmann, H.T.3
Vapnik, V.4
-
2
-
-
0003857778
-
A gentle tutorial on the em algorithm and its application to parameter estimation for gaussian mixture and hidden Markov models
-
UC Berkeley
-
J. Bilmes. A gentle tutorial on the EM algorithm and its application to parameter estimation for gaussian mixture and hidden Markov models. Technical Report ICSI-TR-97-021, UC Berkeley, 1997.
-
(1997)
Technical Report
, vol.ICSI-TR-97-021
-
-
Bilmes, J.1
-
5
-
-
33646396908
-
Hilbertian metrics and positive definite kernels on probability measures
-
MPI for Biological Cybernetics
-
M. Hein and O. Bousquet. Hilbertian metrics and positive definite kernels on probability measures. Technical report, MPI for Biological Cybernetics, 2004.
-
(2004)
Technical Report
-
-
Hein, M.1
Bousquet, O.2
-
12
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
November
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, November 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
13
-
-
33646403956
-
Kernel between sets: The gaussian mixture approach
-
Computer Science Department, Dartmouth College
-
S. Lyu. Kernel between sets: the gaussian mixture approach. Technical Report TR2005-214, Computer Science Department, Dartmouth College, 2005.
-
(2005)
Technical Report
, vol.TR2005-214
-
-
Lyu, S.1
-
14
-
-
0033337021
-
Fisher discriminant analysis with kernels
-
S. Mika, G. Rütsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discriminant analysis with kernels. In IEEE Conference on Neural Networks for Signal Processing, 1999.
-
(1999)
IEEE Conference on Neural Networks for Signal Processing
-
-
Mika, S.1
Rütsch, G.2
Weston, J.3
Schölkopf, B.4
Müller, K.-R.5
-
15
-
-
84898970836
-
Kernel PCA and de-noising in feature spaces
-
Cambridge, MA
-
S. Mika, B. Schölkopf, A. Smola, K.-R. Müller, M. Scholz, and G. Rütsch. Kernel PCA and de-noising in feature spaces. In Advances in Neural Information Processing Systems 11, pages 536-542, Cambridge, MA, 1999.
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
, pp. 536-542
-
-
Mika, S.1
Schölkopf, B.2
Smola, A.3
Müller, K.-R.4
Scholz, M.5
Rütsch, G.6
-
16
-
-
0001473437
-
On estimation of a probability density function and mode
-
E. Parzen. On estimation of a probability density function and mode. Ann. Math. Statistics, 33:1,065-1,076, 1962.
-
(1962)
Ann. Math. Statistics
, vol.33
-
-
Parzen, E.1
-
17
-
-
34047146553
-
-
Department of Computer Science, U. Toronto
-
S. Roweis. Gaussian Identities. Department of Computer Science, U. Toronto, Manuscript available at http://www.cs.toronto.edu/roweis/notes.html, 2001.
-
(2001)
Gaussian Identities
-
-
Roweis, S.1
-
19
-
-
0242679438
-
Finding the number of clusters in a dataset: An information-theoretic approach
-
C.A. Sugar and G.M. James. Finding the number of clusters in a dataset: An information-theoretic approach. Journal of American Statistical Association, 98(463):750-763, 2003.
-
(2003)
Journal of American Statistical Association
, vol.98
, Issue.463
, pp. 750-763
-
-
Sugar, C.A.1
James, G.M.2
|