메뉴 건너뛰기




Volumn 3721 LNAI, Issue , 2005, Pages 684-691

A random method for quantifying changing distributions in data streams

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); COMPUTATIONAL COMPLEXITY; COSTS; DATABASE SYSTEMS; LEARNING SYSTEMS; PROBABILITY DISTRIBUTIONS; SECURITY OF DATA;

EID: 33646388935     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/11564126_73     Document Type: Conference Paper
Times cited : (6)

References (13)
  • 1
    • 1142291588 scopus 로고    scopus 로고
    • A framework for diagnosing changes in evolving data streams
    • Charu C. Aggarwal. A framework for diagnosing changes in evolving data streams. In SIGMOD, 2003.
    • (2003) SIGMOD
    • Aggarwal, C.C.1
  • 2
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Eric Bauer and Ron Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36(1-2):105-139, 1999.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 4
    • 0007173470 scopus 로고
    • Near neighbor search in large metric spaces
    • Switzerland
    • Sergey Brin. Near neighbor search in large metric spaces. In VLDB, Switzerland, 1995.
    • (1995) VLDB
    • Brin, S.1
  • 6
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In ICML, pages 148-156, 1996.
    • (1996) ICML , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 8
    • 0035789299 scopus 로고    scopus 로고
    • Mining time-changing data streams
    • San Francisco, CA. ACM Press
    • G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In SIGKDD, pages 97-106, San Francisco, CA, 2001. ACM Press.
    • (2001) SIGKDD , pp. 97-106
    • Hulten, G.1    Spencer, L.2    Domingos, P.3
  • 9
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • MIT Press
    • A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and active learning. In Advances in Neural Information Processing Systems, volume 7, pages 231-238. MIT Press, 1995.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 10
    • 70350649248 scopus 로고    scopus 로고
    • Online novelty detection on temporal sequences
    • Junshui Ma and Simon Perkins. Online novelty detection on temporal sequences. In SIGKDD, 2003.
    • (2003) SIGKDD
    • Ma, J.1    Perkins, S.2
  • 12
    • 0030365938 scopus 로고    scopus 로고
    • Error correlation and error reduction in ensemble classifiers
    • Kagan Turner and Joydeep Ghosh. Error correlation and error reduction in ensemble classifiers. Connection Science, 8(3-4):385-403, 1996.
    • (1996) Connection Science , vol.8 , Issue.3-4 , pp. 385-403
    • Turner, K.1    Ghosh, J.2
  • 13
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining concept-drifting data streams using ensemble classifiers. In SIGKDD, 2003.
    • (2003) SIGKDD
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.