메뉴 건너뛰기




Volumn 11, Issue 3, 1999, Pages 427-470

The Conley index for fast-slow systems I. One-dimensional slow variable

Author keywords

Conley index; Fast slow systems; Heteroclinic connection; Periodic orbit

Indexed keywords


EID: 33646383658     PISSN: 10407294     EISSN: 15729222     Source Type: Journal    
DOI: 10.1023/A:1021961819853     Document Type: Article
Times cited : (18)

References (15)
  • 1
    • 0004034109 scopus 로고
    • Johnson, R. (ed.), Dynamical Systems Montecatini Terme 1994, Springer, New York
    • Arnold, L., Jones, C., Mischaikow. K., and Raugel, G. (1995). In Johnson, R. (ed.), Dynamical Systems Montecatini Terme 1994, Lecture Notes in Math., Vol. 1609, Springer, New York.
    • (1995) Lecture Notes in Math. , vol.1609
    • Arnold, L.1    Jones, C.2    Mischaikow, K.3    Raugel, G.4
  • 2
    • 0000829330 scopus 로고
    • Isolated invariant sets in compact metric spaces
    • Churchill, R. C. (1972). Isolated invariant sets in compact metric spaces. J. Diff. Eq. 12, 330-352.
    • (1972) J. Diff. Eq. , vol.12 , pp. 330-352
    • Churchill, R.C.1
  • 4
    • 0002616075 scopus 로고
    • A qualitative singular perturbation theorem
    • Nitecki, Z., and Robinson, C. (eds.), Global Theory of Dynamical Systems, Springer-Verlag
    • Conley, C. (1980). A qualitative singular perturbation theorem. In Nitecki, Z., and Robinson, C. (eds.), Global Theory of Dynamical Systems, Lect. Notes Math., Vol. 819, Springer-Verlag, pp. 65-89.
    • (1980) Lect. Notes Math. , vol.819 , pp. 65-89
    • Conley, C.1
  • 5
    • 0002325489 scopus 로고
    • A refinement of the Conley index and an application to the stability of hyperbolic invariant sets
    • Floer, A. (1987). A refinement of the Conley index and an application to the stability of hyperbolic invariant sets. Erg. Thy. Dynam. Syst. 1, 93-103.
    • (1987) Erg. Thy. Dynam. Syst. , vol.1 , pp. 93-103
    • Floer, A.1
  • 6
    • 84966252851 scopus 로고
    • The connection matrix theory for Morse decompositions
    • Franzosa, R. (1989). The connection matrix theory for Morse decompositions. Trans. AMS 311, 781-803.
    • (1989) Trans. AMS , vol.311 , pp. 781-803
    • Franzosa, R.1
  • 8
    • 84968496792 scopus 로고
    • Connected simple systems, transition matrices and heteroclinic bifurcations
    • McCord, C., and Mischaikow, K. (1992). Connected simple systems, transition matrices and heteroclinic bifurcations. Trans. AMS 333, 397-422.
    • (1992) Trans. AMS , vol.333 , pp. 397-422
    • McCord, C.1    Mischaikow, K.2
  • 9
    • 0010093312 scopus 로고
    • Equivalence of topological and singular transition matrices in the Conley index
    • McCord, C., and Mischaikow, K. 1995). Equivalence of topological and singular transition matrices in the Conley index. Mich. Math. J. 42, 387-414.
    • (1995) Mich. Math. J. , vol.42 , pp. 387-414
    • McCord, C.1    Mischaikow, K.2
  • 10
    • 0000443767 scopus 로고
    • Zeta functions, periodic trajectories, and the Conley index
    • McCord, C., Mischaikow, K., and Mrozek, M. (1995). Zeta functions, periodic trajectories, and the Conley index. J. Diff. Eq. 121, 258-292.
    • (1995) J. Diff. Eq. , vol.121 , pp. 258-292
    • McCord, C.1    Mischaikow, K.2    Mrozek, M.3
  • 12
    • 0000704544 scopus 로고
    • Connecting orbits in one-parameter families of flows
    • Reineck, J. (1988). Connecting orbits in one-parameter families of flows. Erg. Thy. Dynam. Syst. 8, 359-374.
    • (1988) Erg. Thy. Dynam. Syst. , vol.8 , pp. 359-374
    • Reineck, J.1
  • 13
    • 84968513731 scopus 로고
    • Connected simple systems and the Conley index of isolated invariant sets
    • Salamon, D. (1985). Connected simple systems and the Conley index of isolated invariant sets. Trans. AMS 291, 1-41.
    • (1985) Trans. AMS , vol.291 , pp. 1-41
    • Salamon, D.1
  • 15
    • 0003807144 scopus 로고
    • McGraw-Hill, New York; Springer-Verlag, New York
    • Spanier, E. (1966, 1982). In Algebraic Topology, McGraw-Hill, New York; Springer-Verlag, New York.
    • (1966) Algebraic Topology
    • Spanier, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.