메뉴 건너뛰기




Volumn 11, Issue 3, 1999, Pages 399-425

Singular index pairs

Author keywords

Conley index; Index pair; Isolating neighborhood; Nagumo equations; Singular perturbation

Indexed keywords


EID: 0002423323     PISSN: 10407294     EISSN: 15729222     Source Type: Journal    
DOI: 10.1023/A:1021909803014     Document Type: Article
Times cited : (9)

References (13)
  • 1
    • 53149147704 scopus 로고
    • Johnson, R. (ed.), Dynamical Systems Montecatini Terme 1994, Springer, New York
    • Arnold, L., Jones, C., Mischaikow, K., and Raugel, G. (1995). In Johnson, R. (ed.), Dynamical Systems Montecatini Terme 1994, Lect. Notes Math. 1609, Springer, New York.
    • (1995) Lect. Notes Math. , vol.1609
    • Arnold, L.1    Jones, C.2    Mischaikow, K.3    Raugel, G.4
  • 2
    • 0003262604 scopus 로고
    • Isolated Invariant Sets and the Morse Index
    • A.M.S., Providence, RI
    • Conley, C. (1978). Isolated Invariant Sets and the Morse Index, CBMS Lect. Notes 38, A.M.S., Providence, RI.
    • (1978) CBMS Lect. Notes , vol.38
    • Conley, C.1
  • 3
    • 0002616075 scopus 로고
    • A qualitative singular perturbation theorem
    • Nitecki, Z., and Robinson, C. (eds.), Global Theory of Dynamical Systems, Springer-Verlag, New York
    • Conley, C. (1980). A qualitative singular perturbation theorem. In Nitecki, Z., and Robinson, C. (eds.), Global Theory of Dynamical Systems, Lect. Notes Math. 819, Springer-Verlag, New York, pp. 65-89.
    • (1980) Lect. Notes Math. , vol.819 , pp. 65-89
    • Conley, C.1
  • 4
    • 0001356311 scopus 로고
    • Persistence and smoothness of invariant manifolds for flows
    • Fenichel, N. (1971). Persistence and smoothness of invariant manifolds for flows. Ind. Univ. Math. J. 21, 193-226.
    • (1971) Ind. Univ. Math. J. , vol.21 , pp. 193-226
    • Fenichel, N.1
  • 5
    • 34250627892 scopus 로고
    • Geometric singular perturbation theory for ordinary differential equations
    • Fenichel, N. (1979). Geometric singular perturbation theory for ordinary differential equations. J. Diff. Eq. 31, 53-98.
    • (1979) J. Diff. Eq. , vol.31 , pp. 53-98
    • Fenichel, N.1
  • 6
    • 33646383658 scopus 로고    scopus 로고
    • The Conley index for fast-slow systems I. One-dimensional slow variable
    • Gedeon, T., Kokubu, H., Mischaikow, K., Oka, H., and Reineck, J. (1999). The Conley index for fast-slow systems I. One-dimensional slow variable. J. Dyn. Diff. Eqns. 11, 427-470.
    • (1999) J. Dyn. Diff. Eqns. , vol.11 , pp. 427-470
    • Gedeon, T.1    Kokubu, H.2    Mischaikow, K.3    Oka, H.4    Reineck, J.5
  • 7
    • 0001441740 scopus 로고
    • Invariant Manifolds
    • Springer-Verlag, New York
    • Hirsch, M., Pugh, C., and Shub, M. (1977). Invariant Manifolds, Lect. Notes Math. 583, Springer-Verlag, New York.
    • (1977) Lect. Notes Math. , vol.583
    • Hirsch, M.1    Pugh, C.2    Shub, M.3
  • 9
    • 0000443767 scopus 로고
    • Zeta functions, periodic trajectories, and the Conley index
    • McCord, C., Mischaikow, K., and Mrozek, M. (1995). Zeta functions, periodic trajectories, and the Conley index. J. Diff. Eq. 121, 258-292.
    • (1995) J. Diff. Eq. , vol.121 , pp. 258-292
    • McCord, C.1    Mischaikow, K.2    Mrozek, M.3
  • 10
    • 0040764460 scopus 로고
    • The structure of isolated invariant sets and the Conley index
    • McCord, C. (ed.), AMS, Providence, RI
    • Mischaikow, K. (1993). The structure of isolated invariant sets and the Conley index. In McCord, C. (ed.), Contemporary Mathematics 152, AMS, Providence, RI, pp. 269-290.
    • (1993) Contemporary Mathematics , vol.152 , pp. 269-290
    • Mischaikow, K.1
  • 11
    • 84968513731 scopus 로고
    • Connected simple systems and the Conley index of isolated invariant sets
    • Salamon, D. (1985). Connected simple systems and the Conley index of isolated invariant sets. Trans. AMS 291, 1-41.
    • (1985) Trans. AMS , vol.291 , pp. 1-41
    • Salamon, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.