메뉴 건너뛰기




Volumn 367, Issue , 2006, Pages 613-618

Topological properties of integer networks

Author keywords

Complex networks; Integer networks; Upper bound of average distance

Indexed keywords

COMPUTATIONAL COMPLEXITY; COMPUTATIONAL METHODS; NUMBER THEORY; STATISTICAL MECHANICS; TOPOLOGY;

EID: 33646372449     PISSN: 03784371     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.physa.2005.11.011     Document Type: Article
Times cited : (31)

References (33)
  • 16
    • 33646353803 scopus 로고    scopus 로고
    • The diameter D of a network G ( V, E ) is the maximal distance: D = ce:monospace(max) { d ( x, y ) | x, y ∈ V }, where d ( x, y ) is the distance between two vertices x and y.
  • 19
  • 23
    • 33646350399 scopus 로고    scopus 로고
    • T. Zhou, M. Zhao, B.-H. Wang, arXiv: cond-mat/0508368.
  • 25
    • 33646353300 scopus 로고    scopus 로고
    • G. Yan, T. Zhou, B. Hu, Z.-Q. Fu, B.-H. Wang, arXiv: cond-mat/0505366.
  • 28
    • 33646345721 scopus 로고    scopus 로고
    • C.-Y. Yin, B.-H. Wang, W.-X. Wang, T. Zhou, H.-J. Yang, arXiv: physics/0506204.
  • 29
    • 33646345474 scopus 로고    scopus 로고
    • For arbitrary pair of nodes, one can immediately know whether the two nodes are connected by checking the divisibility relation between them. Therefore, the global information in available without memory requirement.
  • 33
    • 33646367297 scopus 로고    scopus 로고
    • Z.-M. Gu, T. Zhou, B.-H. Wang, et al., arXiv: cond-mat/0505175.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.