-
1
-
-
0000902522
-
Data clustering using a model granular magnet
-
M. Blatt, S. Wiseman. and E. Domany, "Data clustering using a model granular magnet", Neural Compul., 9, pp. 1805-1842, 1997.
-
(1997)
Neural Compul.
, vol.9
, pp. 1805-1842
-
-
Blatt, M.1
Wiseman, S.2
Domany, E.3
-
3
-
-
0032871941
-
SpikeNET: A simulator for modeling large networks of integrate and fire neurons
-
A. Dclorme, J. Gautrais, R. Van Rullcn and S.J. Thorpe, "SpikeNET: a simulator for modeling large networks of integrate and fire neurons". Neurocomputing, 26 27, pp. 989 -996, 1999.
-
(1999)
Neurocomputing
, vol.26-27
, pp. 989-996
-
-
Dclorme, A.1
Gautrais, J.2
Van Rullcn, R.3
Thorpe, S.J.4
-
4
-
-
0000788367
-
Time structure of the activity in neural network models
-
W. Gerstner, "Time structure of the activity in neural network models", Phys. Rev. E, 51, pp. 738-758, 1995.
-
(1995)
Phys. Rev. E
, vol.51
, pp. 738-758
-
-
Gerstner, W.1
-
5
-
-
0029821128
-
A neuronal learning rule for sub-millisecond temporal coding
-
W. Gcrstner, R. Kempter, L. van Hemmen and H. Wagner, "A neuronal learning rule for sub-millisecond temporal coding", Nature, 383, pp. 76 -78, 1996.
-
(1996)
Nature
, vol.383
, pp. 76-78
-
-
Gcrstner, W.1
Kempter, R.2
Van Hemmen, L.3
Wagner, H.4
-
6
-
-
0033556908
-
An on-line agglomcrativc clustering method for nonslalionary data
-
I.D. Guedalia, M. London and M. Werman, "An on-line agglomcrativc clustering method for nonslalionary data", Neural Camput., 11, pp. 521- 540, 1999.
-
(1999)
Neural Camput.
, vol.11
, pp. 521-540
-
-
Guedalia, I.D.1
London, M.2
Werman, M.3
-
7
-
-
0021857913
-
Neuronal circuitry in olfactory cortex: Anatomy and functional implications
-
L. Haberly, "Neuronal circuitry in olfactory cortex: anatomy and functional implications", Chem. Senses, 10, pp. 219-238, 1985.
-
(1985)
Chem. Senses
, vol.10
, pp. 219-238
-
-
Haberly, L.1
-
8
-
-
0029637779
-
Pattern recognition computation using action potential timing for stimulus representation
-
J. J. Hopfield, "Pattern recognition computation using action potential timing for stimulus representation", Nature, 376, pp. 33 -36, 1995.
-
(1995)
Nature
, vol.376
, pp. 33-36
-
-
Hopfield, J.J.1
-
9
-
-
0001781836
-
Lower bounds for the computational power of networks of spiking neurons
-
W. Maas, "Lower bounds for the computational power of networks of spiking neurons", Neural Comput., 8, pp. 1-40, 1996.
-
(1996)
Neural Comput.
, vol.8
, pp. 1-40
-
-
Maas, W.1
-
10
-
-
0031568358
-
Fast sigmoidal networks via spiking neurons
-
W. Maas, "Fast sigmoidal networks via spiking neurons", Neural Comput., 9, pp. 279- 304, 1997.
-
(1997)
Neural Comput.
, vol.9
, pp. 279-304
-
-
Maas, W.1
-
11
-
-
0031472340
-
Networks of spiking neurons: The third generation of neural network models
-
W. Maas, "Networks of spiking neurons: the third generation of neural network models", Neural Networks, 10. pp. 1659-1671, 1998.
-
(1998)
Neural Networks
, vol.10
, pp. 1659-1671
-
-
Maas, W.1
-
12
-
-
0029738588
-
Redistribution of synaptic efficacy between neocortical pyramidal neurons
-
H Markram and M. Tsodyks, "Redistribution of synaptic efficacy between neocortical pyramidal neurons", Mature, 382, pp. 807-810, 1996.
-
(1996)
Mature
, vol.382
, pp. 807-810
-
-
Markram, H.1
Tsodyks, M.2
-
13
-
-
0034296490
-
Efficient event-driven simulation of large networks ot" spiking neurons and dynamical synapses
-
M. Mattia and P. Del Giudicc, "Efficient event-driven simulation of large networks ot" spiking neurons and dynamical synapses", Neural Camput., 12, pp. 2305 -2329, 2000.
-
(2000)
Neural Camput.
, vol.12
, pp. 2305-2329
-
-
Mattia, M.1
Del Giudicc, P.2
-
14
-
-
0003612091
-
-
D. Michie, D.j. Spiegelhalter, and C.C. Tavlor (Eds), New York: Ellis Horwood
-
D. Michie, D.j. Spiegelhalter, and C.C. Tavlor (Eds), Machine learning, Neural and Statistical Classification, New York: Ellis Horwood, 1994.
-
(1994)
Machine Learning, Neural and Statistical Classification
-
-
-
15
-
-
26444486505
-
Spatial and temporal pattern analysis via spiking neurons
-
T. Natschlager and B. Ruf, "Spatial and temporal pattern analysis via spiking neurons". Network: Comput. Neural Syst., 9, pp. 319-332, 1998.
-
(1998)
Network: Comput. Neural Syst.
, vol.9
, pp. 319-332
-
-
Natschlager, T.1
Ruf, B.2
-
16
-
-
0027261536
-
Phase relationship between hippocampal place units and the EEG theta rhythm
-
J. O'Keefe and M.L. Rcecc, "Phase relationship between hippocampal place units and the EEG theta rhythm", Hippocampus, 3, pp. 317 330, 1993.
-
(1993)
Hippocampus
, vol.3
, pp. 317330
-
-
O'Keefe, J.1
Rcecc, M.L.2
-
17
-
-
0006019710
-
An expectation-maximization approach to nonlinear component analysis
-
R. Rosipal and M. Girolami, "An expectation-maximization approach to nonlinear component analysis", Neural Comput., 13, pp. 505-510, 2000.
-
(2000)
Neural Comput.
, vol.13
, pp. 505-510
-
-
Rosipal, R.1
Girolami, M.2
-
18
-
-
0033860923
-
Competitive Hcbbian learning through spikc-timing-dependent synaptic plasticity
-
S. Song, K.D. Miller and L.F Abbott, "Competitive Hcbbian learning through spikc-timing-dependent synaptic plasticity", Nature Neurosci., 3, pp. 919-926, 2000.
-
(2000)
Nature Neurosci.
, vol.3
, pp. 919-926
-
-
Song, S.1
Miller, K.D.2
Abbott, L.F.3
-
19
-
-
0033350105
-
Training algorithm with incomplete data for Feed-forward neural networks
-
Y. L. Soo and Y.Y. Song, "Training algorithm with incomplete data for Feed-forward neural networks", Neural Process. Lett., 10, pp. 171-179, 1999.
-
(1999)
Neural Process. Lett.
, vol.10
, pp. 171-179
-
-
Soo, Y.L.1
Song, Y.Y.2
-
20
-
-
0001679299
-
Maximum likelihood principal component analysis
-
P.D. Wentell, D.T. Andrews, D.C. Hamilton, K. Fabcr and B.R. Kowalski, "Maximum likelihood principal component analysis", J. Clicmometr., 11, pp. 339-366, 1997.
-
(1997)
J. Clicmometr.
, vol.11
, pp. 339-366
-
-
Wentell, P.D.1
Andrews, D.T.2
Hamilton, D.C.3
Fabcr, K.4
Kowalski, B.R.5
-
21
-
-
84974755191
-
Generation of fuzzy rules by mountain clustering
-
R. Yager and D. Filev, "Generation of fuzzy rules by mountain clustering", J Intell. Fuzzy Syst., 2, pp. 209- 219, 1994.
-
(1994)
J Intell. Fuzzy Syst.
, vol.2
, pp. 209-219
-
-
Yager, R.1
Filev, D.2
|