메뉴 건너뛰기




Volumn 18, Issue 1, 2006, Pages 73-86

Learning and data clustering with an RBF-based spiking neuron network

Author keywords

Data clustering; Learning algorithm; Neural networks; Radial basis function; Spiking neuron

Indexed keywords

DATA PROCESSING; KNOWLEDGE REPRESENTATION; LEARNING ALGORITHMS; LEARNING SYSTEMS; PLASTICITY;

EID: 33646236309     PISSN: 0952813X     EISSN: 13623079     Source Type: Journal    
DOI: 10.1080/09528130600552888     Document Type: Article
Times cited : (9)

References (21)
  • 1
    • 0000902522 scopus 로고    scopus 로고
    • Data clustering using a model granular magnet
    • M. Blatt, S. Wiseman. and E. Domany, "Data clustering using a model granular magnet", Neural Compul., 9, pp. 1805-1842, 1997.
    • (1997) Neural Compul. , vol.9 , pp. 1805-1842
    • Blatt, M.1    Wiseman, S.2    Domany, E.3
  • 3
    • 0032871941 scopus 로고    scopus 로고
    • SpikeNET: A simulator for modeling large networks of integrate and fire neurons
    • A. Dclorme, J. Gautrais, R. Van Rullcn and S.J. Thorpe, "SpikeNET: a simulator for modeling large networks of integrate and fire neurons". Neurocomputing, 26 27, pp. 989 -996, 1999.
    • (1999) Neurocomputing , vol.26-27 , pp. 989-996
    • Dclorme, A.1    Gautrais, J.2    Van Rullcn, R.3    Thorpe, S.J.4
  • 4
    • 0000788367 scopus 로고
    • Time structure of the activity in neural network models
    • W. Gerstner, "Time structure of the activity in neural network models", Phys. Rev. E, 51, pp. 738-758, 1995.
    • (1995) Phys. Rev. E , vol.51 , pp. 738-758
    • Gerstner, W.1
  • 5
    • 0029821128 scopus 로고    scopus 로고
    • A neuronal learning rule for sub-millisecond temporal coding
    • W. Gcrstner, R. Kempter, L. van Hemmen and H. Wagner, "A neuronal learning rule for sub-millisecond temporal coding", Nature, 383, pp. 76 -78, 1996.
    • (1996) Nature , vol.383 , pp. 76-78
    • Gcrstner, W.1    Kempter, R.2    Van Hemmen, L.3    Wagner, H.4
  • 6
    • 0033556908 scopus 로고    scopus 로고
    • An on-line agglomcrativc clustering method for nonslalionary data
    • I.D. Guedalia, M. London and M. Werman, "An on-line agglomcrativc clustering method for nonslalionary data", Neural Camput., 11, pp. 521- 540, 1999.
    • (1999) Neural Camput. , vol.11 , pp. 521-540
    • Guedalia, I.D.1    London, M.2    Werman, M.3
  • 7
    • 0021857913 scopus 로고
    • Neuronal circuitry in olfactory cortex: Anatomy and functional implications
    • L. Haberly, "Neuronal circuitry in olfactory cortex: anatomy and functional implications", Chem. Senses, 10, pp. 219-238, 1985.
    • (1985) Chem. Senses , vol.10 , pp. 219-238
    • Haberly, L.1
  • 8
    • 0029637779 scopus 로고
    • Pattern recognition computation using action potential timing for stimulus representation
    • J. J. Hopfield, "Pattern recognition computation using action potential timing for stimulus representation", Nature, 376, pp. 33 -36, 1995.
    • (1995) Nature , vol.376 , pp. 33-36
    • Hopfield, J.J.1
  • 9
    • 0001781836 scopus 로고    scopus 로고
    • Lower bounds for the computational power of networks of spiking neurons
    • W. Maas, "Lower bounds for the computational power of networks of spiking neurons", Neural Comput., 8, pp. 1-40, 1996.
    • (1996) Neural Comput. , vol.8 , pp. 1-40
    • Maas, W.1
  • 10
    • 0031568358 scopus 로고    scopus 로고
    • Fast sigmoidal networks via spiking neurons
    • W. Maas, "Fast sigmoidal networks via spiking neurons", Neural Comput., 9, pp. 279- 304, 1997.
    • (1997) Neural Comput. , vol.9 , pp. 279-304
    • Maas, W.1
  • 11
    • 0031472340 scopus 로고    scopus 로고
    • Networks of spiking neurons: The third generation of neural network models
    • W. Maas, "Networks of spiking neurons: the third generation of neural network models", Neural Networks, 10. pp. 1659-1671, 1998.
    • (1998) Neural Networks , vol.10 , pp. 1659-1671
    • Maas, W.1
  • 12
    • 0029738588 scopus 로고    scopus 로고
    • Redistribution of synaptic efficacy between neocortical pyramidal neurons
    • H Markram and M. Tsodyks, "Redistribution of synaptic efficacy between neocortical pyramidal neurons", Mature, 382, pp. 807-810, 1996.
    • (1996) Mature , vol.382 , pp. 807-810
    • Markram, H.1    Tsodyks, M.2
  • 13
    • 0034296490 scopus 로고    scopus 로고
    • Efficient event-driven simulation of large networks ot" spiking neurons and dynamical synapses
    • M. Mattia and P. Del Giudicc, "Efficient event-driven simulation of large networks ot" spiking neurons and dynamical synapses", Neural Camput., 12, pp. 2305 -2329, 2000.
    • (2000) Neural Camput. , vol.12 , pp. 2305-2329
    • Mattia, M.1    Del Giudicc, P.2
  • 14
    • 0003612091 scopus 로고
    • D. Michie, D.j. Spiegelhalter, and C.C. Tavlor (Eds), New York: Ellis Horwood
    • D. Michie, D.j. Spiegelhalter, and C.C. Tavlor (Eds), Machine learning, Neural and Statistical Classification, New York: Ellis Horwood, 1994.
    • (1994) Machine Learning, Neural and Statistical Classification
  • 15
    • 26444486505 scopus 로고    scopus 로고
    • Spatial and temporal pattern analysis via spiking neurons
    • T. Natschlager and B. Ruf, "Spatial and temporal pattern analysis via spiking neurons". Network: Comput. Neural Syst., 9, pp. 319-332, 1998.
    • (1998) Network: Comput. Neural Syst. , vol.9 , pp. 319-332
    • Natschlager, T.1    Ruf, B.2
  • 16
    • 0027261536 scopus 로고
    • Phase relationship between hippocampal place units and the EEG theta rhythm
    • J. O'Keefe and M.L. Rcecc, "Phase relationship between hippocampal place units and the EEG theta rhythm", Hippocampus, 3, pp. 317 330, 1993.
    • (1993) Hippocampus , vol.3 , pp. 317330
    • O'Keefe, J.1    Rcecc, M.L.2
  • 17
    • 0006019710 scopus 로고    scopus 로고
    • An expectation-maximization approach to nonlinear component analysis
    • R. Rosipal and M. Girolami, "An expectation-maximization approach to nonlinear component analysis", Neural Comput., 13, pp. 505-510, 2000.
    • (2000) Neural Comput. , vol.13 , pp. 505-510
    • Rosipal, R.1    Girolami, M.2
  • 18
    • 0033860923 scopus 로고    scopus 로고
    • Competitive Hcbbian learning through spikc-timing-dependent synaptic plasticity
    • S. Song, K.D. Miller and L.F Abbott, "Competitive Hcbbian learning through spikc-timing-dependent synaptic plasticity", Nature Neurosci., 3, pp. 919-926, 2000.
    • (2000) Nature Neurosci. , vol.3 , pp. 919-926
    • Song, S.1    Miller, K.D.2    Abbott, L.F.3
  • 19
    • 0033350105 scopus 로고    scopus 로고
    • Training algorithm with incomplete data for Feed-forward neural networks
    • Y. L. Soo and Y.Y. Song, "Training algorithm with incomplete data for Feed-forward neural networks", Neural Process. Lett., 10, pp. 171-179, 1999.
    • (1999) Neural Process. Lett. , vol.10 , pp. 171-179
    • Soo, Y.L.1    Song, Y.Y.2
  • 21
    • 84974755191 scopus 로고
    • Generation of fuzzy rules by mountain clustering
    • R. Yager and D. Filev, "Generation of fuzzy rules by mountain clustering", J Intell. Fuzzy Syst., 2, pp. 209- 219, 1994.
    • (1994) J Intell. Fuzzy Syst. , vol.2 , pp. 209-219
    • Yager, R.1    Filev, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.