-
2
-
-
0021111574
-
Flexural rigidity of singlet microtubules estimated from statistical analysis of their contour lengths and end-to-end distances
-
Mizushima-Sugano, J., T. Maeda, and T. Miki-Noumura. 1983. Flexural rigidity of singlet microtubules estimated from statistical analysis of their contour lengths and end-to-end distances. Biochim. Biophys. Acta. 755:257-262.
-
(1983)
Biochim. Biophys. Acta
, vol.755
, pp. 257-262
-
-
Mizushima-Sugano, J.1
Maeda, T.2
Miki-Noumura, T.3
-
3
-
-
0028899928
-
Buckling of a single microtubule by optical trapping force: Direct measurement of microtubule rigidity
-
Kurachi, M., M. Hoshi, and H. Tashiro. 1995. Buckling of a single microtubule by optical trapping force: direct measurement of microtubule rigidity. Cell Motil. Cytoskeleton. 30:221-228.
-
(1995)
Cell Motil. Cytoskeleton
, vol.30
, pp. 221-228
-
-
Kurachi, M.1
Hoshi, M.2
Tashiro, H.3
-
4
-
-
4243235795
-
Direct measurement of microtubule flexural rigidity with the laser trap
-
Tran, P. T., S. F. Parsons, R. Sterba, Z. Wang, M. P. Sheetz, and E. D. Salmon. 1995. Direct measurement of microtubule flexural rigidity with the laser trap. Mol. Biol. Cell. 6:260a.
-
(1995)
Mol. Biol. Cell
, vol.6
-
-
Tran, P.T.1
Parsons, S.F.2
Sterba, R.3
Wang, Z.4
Sheetz, M.P.5
Salmon, E.D.6
-
5
-
-
0030058586
-
Flexural rigidity of microtubules measured with the use of optical tweezers
-
Felgner, H., R. Frank, and M. Schliwa. 1996. Flexural rigidity of microtubules measured with the use of optical tweezers. J. Cell Sci. 109:509-516.
-
(1996)
J. Cell Sci.
, vol.109
, pp. 509-516
-
-
Felgner, H.1
Frank, R.2
Schliwa, M.3
-
6
-
-
0030955208
-
Domains of neuronal microtubule-associated proteins and flexural rigidity of microtubules
-
Felgner, H., R. Frank, J. Biernat, E.-M. Mandelkow, E. Mandelkow, B. Ludin, A. Matus, and M. Schliwa. 1997. Domains of neuronal microtubule-associated proteins and flexural rigidity of microtubules. J. Cell Biol. 138:1067-1075.
-
(1997)
J. Cell Biol.
, vol.138
, pp. 1067-1075
-
-
Felgner, H.1
Frank, R.2
Biernat, J.3
Mandelkow, E.-M.4
Mandelkow, E.5
Ludin, B.6
Matus, A.7
Schliwa, M.8
-
7
-
-
0028235620
-
Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations
-
Venier, P., A. C. Maggs, M.-F. Carlier, and D. Pantaloni. 1994. Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations. J. Biol. Chem. 269:13353-13360.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 13353-13360
-
-
Venier, P.1
Maggs, A.C.2
Carlier, M.-F.3
Pantaloni, D.4
-
8
-
-
0028822031
-
Microtubule-associated proteins and the flexibility of microtubules
-
Kurz, J. C., and R. C. Williams, Jr. 1995. Microtubule-associated proteins and the flexibility of microtubules. Biochemistry. 34:13374-13380.
-
(1995)
Biochemistry
, vol.34
, pp. 13374-13380
-
-
Kurz, J.C.1
Williams Jr., R.C.2
-
9
-
-
0027533269
-
Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape
-
Gittes, F., B. Mickey, J. Nettleton, and J. Howard. 1993. Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J. Cell Biol. 120:923-934.
-
(1993)
J. Cell Biol.
, vol.120
, pp. 923-934
-
-
Gittes, F.1
Mickey, B.2
Nettleton, J.3
Howard, J.4
-
10
-
-
0027511869
-
Taxol-induced flexibility of microtubules and its reversal by MAP-2 and t
-
Dye, R. B., S. P. Fink, and R. C. Williams, Jr. 1993. Taxol-induced flexibility of microtubules and its reversal by MAP-2 and t. J. Biol. Chem. 268:6847-6850.
-
(1993)
J. Biol. Chem.
, vol.268
, pp. 6847-6850
-
-
Dye, R.B.1
Fink, S.P.2
Williams Jr., R.C.3
-
11
-
-
0029153356
-
Rigidity of microtubules is increased by stabilizing agents
-
Mickey, B., and J. Howard. 1995. Rigidity of microtubules is increased by stabilizing agents. J. Cell Biol. 130:909-917.
-
(1995)
J. Cell Biol.
, vol.130
, pp. 909-917
-
-
Mickey, B.1
Howard, J.2
-
12
-
-
0034839279
-
XMAP215 is a long thin molecule that does not increase microtubule stiffness
-
Cassimeris, L., D. Gard, P. T. Tran, and H. P. Erickson. 2001. XMAP215 is a long thin molecule that does not increase microtubule stiffness. J. Cell Sci. 114:3025-3033.
-
(2001)
J. Cell Sci.
, vol.114
, pp. 3025-3033
-
-
Cassimeris, L.1
Gard, D.2
Tran, P.T.3
Erickson, H.P.4
-
13
-
-
11244275102
-
A bending mode analysis for growing microtubules: Evidence for a velocity-dependent rigidity
-
Janson, M. E., and M. Dogterom. 2004. A bending mode analysis for growing microtubules: evidence for a velocity-dependent rigidity. Biophys. J. 87:2723-2736.
-
(2004)
Biophys. J.
, vol.87
, pp. 2723-2736
-
-
Janson, M.E.1
Dogterom, M.2
-
15
-
-
33646133351
-
Microtubule-associated proteins (MAPs) and the assembly of microtubules in vitro
-
R. Goldman, T. Pollard, and J. L. Rosenbaum, editors. Cold Spring Harbor, New York
-
Sloboda, R. D., W. L. Dentler, R. A. Bloodgood, B. R. Telzer, S. Granett, and J. L. Rosenbaum. 1976. Microtubule-associated proteins (MAPs) and the assembly of microtubules in vitro. In Cell Motility. R. Goldman, T. Pollard, and J. L. Rosenbaum, editors. Cold Spring Harbor, New York. 1171-1212.
-
(1976)
Cell Motility
, pp. 1171-1212
-
-
Sloboda, R.D.1
Dentler, W.L.2
Bloodgood, R.A.3
Telzer, B.R.4
Granett, S.5
Rosenbaum, J.L.6
-
16
-
-
0021216472
-
The effects of deuterium oxide (2H2O) on the polymerization of tubulin in vitro
-
Itoh, T. J., and H. Sato. 1984. The effects of deuterium oxide (2H2O) on the polymerization of tubulin in vitro. Biochim. Biophys. Acta. 800:21-27.
-
(1984)
Biochim. Biophys. Acta
, vol.800
, pp. 21-27
-
-
Itoh, T.J.1
Sato, H.2
-
19
-
-
0001954427
-
Codes for boundary value problems in ordinary differential equations
-
B. Childs, M. Scott, J.W. Daniel, E. Denman, and P. Nelson, editors. Springer Verlag, New York
-
Pereyra, V. 1979. Codes for boundary value problems in ordinary differential equations. In Lecture Notes in Computer Science, Vol. 76. B. Childs, M. Scott, J.W. Daniel, E. Denman, and P. Nelson, editors. Springer Verlag, New York.
-
(1979)
Lecture Notes in Computer Science
, vol.76
-
-
Pereyra, V.1
-
20
-
-
0027211908
-
Kinesin follows the microtubule's protofilament axis
-
Ray, S., E. Meyhofer, R. A. Milligan, and J. Howard. 1993. Kinesin follows the microtubule's protofilament axis. J. Cell Biol. 121:1083-1093.
-
(1993)
J. Cell Biol.
, vol.121
, pp. 1083-1093
-
-
Ray, S.1
Meyhofer, E.2
Milligan, R.A.3
Howard, J.4
-
21
-
-
0029063397
-
Structure of tubulin at 6.5 Å and location of the taxol-binding site
-
Nogales, E., S. G. Wolf, I. A. Khan, R. F. Ludueña, and K. H. Downing. 1995. Structure of tubulin at 6.5 Å and location of the taxol-binding site. Nature. 375:424-427.
-
(1995)
Nature
, vol.375
, pp. 424-427
-
-
Nogales, E.1
Wolf, S.G.2
Khan, I.A.3
Ludueña, R.F.4
Downing, K.H.5
-
22
-
-
0031035189
-
Actin filament mechanics in the laser trap
-
Dupuis, D. E., W. H. Guilford, J. Wu, and D. M. Warshaw. 1997. Actin filament mechanics in the laser trap. J. Muscle Res. Cell Motil. 18:17-30.
-
(1997)
J. Muscle Res. Cell Motil.
, vol.18
, pp. 17-30
-
-
Dupuis, D.E.1
Guilford, W.H.2
Wu, J.3
Warshaw, D.M.4
-
23
-
-
0025075839
-
Atomic model of the actin filament
-
Holmes, K. C., D. Popp, W. Gebhard, and W. Kabsch. 1991. Atomic model of the actin filament. Nature. 347:44-49.
-
(1991)
Nature
, vol.347
, pp. 44-49
-
-
Holmes, K.C.1
Popp, D.2
Gebhard, W.3
Kabsch, W.4
-
24
-
-
0037049681
-
Nanomechanics of microtubules
-
Kis, A., S. Kasas, B. Babic, A. J. Kulik, W. Benoît, G. A. D. Briggs, C. Schönenberger, S. Catsicas, and L. Forró. 2002. Nanomechanics of microtubules. Phys. Rev. Lett. 89:248101.
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 248101
-
-
Kis, A.1
Kasas, S.2
Babic, B.3
Kulik, A.J.4
Benoît, W.5
Briggs, G.A.D.6
Schönenberger, C.7
Catsicas, S.8
Forró, L.9
-
25
-
-
0031879578
-
Trapping and wiggling: Elastohydrodynamics of driven microfilaments
-
Wiggins, C. H., D. Riveline, A. Ott, and R. E. Goldstein. 1998. Trapping and wiggling: elastohydrodynamics of driven microfilaments. Biophys. J. 74:1043-1060.
-
(1998)
Biophys. J.
, vol.74
, pp. 1043-1060
-
-
Wiggins, C.H.1
Riveline, D.2
Ott, A.3
Goldstein, R.E.4
-
26
-
-
0021261156
-
Direct observation of motion of single F-actin filaments in the presence of myosin
-
Yanagida, T., M. Nakase, K. Nishiyama, and F. Oosawa. 1984. Direct observation of motion of single F-actin filaments in the presence of myosin. Nature. 307:58-60.
-
(1984)
Nature
, vol.307
, pp. 58-60
-
-
Yanagida, T.1
Nakase, M.2
Nishiyama, K.3
Oosawa, F.4
-
27
-
-
0030601791
-
Direct measurement of the torsional rigidity of single actin filaments
-
Yasuda, R., H. Miyata, and K. Kinosita, Jr. 1996. Direct measurement of the torsional rigidity of single actin filaments. J. Mol. Biol. 263:227-236.
-
(1996)
J. Mol. Biol.
, vol.263
, pp. 227-236
-
-
Yasuda, R.1
Miyata, H.2
Kinosita Jr., K.3
-
28
-
-
0037014270
-
Effect of internal friction on biofilament dynamics
-
Poirier, M. G., and J. F. Marko. 2002. Effect of internal friction on biofilament dynamics. Phys. Rev. Lett. 88:228103.
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 228103
-
-
Poirier, M.G.1
Marko, J.F.2
-
29
-
-
0033534629
-
High-resolution model of the microtubule
-
Nogales, E., M. Whittaker, R. Milligan, and K. H. Downing. 1999. High-resolution model of the microtubule. Cell. 96:79-88.
-
(1999)
Cell
, vol.96
, pp. 79-88
-
-
Nogales, E.1
Whittaker, M.2
Milligan, R.3
Downing, K.H.4
-
30
-
-
2442442943
-
Mechanical properties of microtubules explored using the finite elements method
-
Kasas, S., A. Kis, B. M. Riederer, L. Forró, G. Dietler, and S. Catsicas. 2004. Mechanical properties of microtubules explored using the finite elements method. Chem. Phys. Chem. 20:252-257.
-
(2004)
Chem. Phys. Chem.
, vol.20
, pp. 252-257
-
-
Kasas, S.1
Kis, A.2
Riederer, B.M.3
Forró, L.4
Dietler, G.5
Catsicas, S.6
|