메뉴 건너뛰기




Volumn 5, Issue , 2004, Pages 239-253

Weather data mining using independent component analysis

Author keywords

ICA; North Atlantic Oscillation; Spatio temporal pattern mining

Indexed keywords

ATMOSPHERIC PRESSURE; INDEPENDENT COMPONENT ANALYSIS; METEOROLOGY;

EID: 33645977843     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (42)

References (29)
  • 1
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • S.-I. Amari. Natural gradient works efficiently in learning. Neural computation, 10:251-276, 1998.
    • (1998) Neural Computation , vol.10 , pp. 251-276
    • Amari, S.-I.1
  • 3
    • 0033561967 scopus 로고    scopus 로고
    • Blind separation of a mixture of uniformly distributed signals
    • J. Basak and S.-I. Amari. Blind separation of a mixture of uniformly distributed signals. Neural Computation, 11:1011-1034, 1999.
    • (1999) Neural Computation , vol.11 , pp. 1011-1034
    • Basak, J.1    Amari, S.-I.2
  • 4
    • 0029411030 scopus 로고
    • An information maximization approach to blind separation and blind deconvolution
    • A. J. Bell and T. J. Sejnowski. An information maximization approach to blind separation and blind deconvolution. Neural Computation, 7:1129-1159, 1995.
    • (1995) Neural Computation , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 5
    • 0030832881 scopus 로고    scopus 로고
    • The 'independent components' of natural scenes are edge filters
    • A. J. Bell and T. J. Sejnowski. The 'independent components' of natural scenes are edge filters. Vision Research, 37(23):3327-3338, 1997.
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3327-3338
    • Bell, A.J.1    Sejnowski, T.J.2
  • 9
    • 0032466364 scopus 로고    scopus 로고
    • Applying neural network models to prediction and data analyis in meteorology and oceanography
    • W. W. Hsieh and B. Tang. Applying neural network models to prediction and data analyis in meteorology and oceanography. Bulletin of America Meteorological Society, 79:1855-1870, 1998.
    • (1998) Bulletin of America Meteorological Society , vol.79 , pp. 1855-1870
    • Hsieh, W.W.1    Tang, B.2
  • 10
    • 0029479274 scopus 로고
    • Decadal trends in the North Atlantic Oscillation region temperatures and precipitation
    • J. W. Hurrell. Decadal trends in the North Atlantic Oscillation region temperatures and precipitation. Science, 269:676-679, 1995.
    • (1995) Science , vol.269 , pp. 676-679
    • Hurrell, J.W.1
  • 11
    • 18044403793 scopus 로고    scopus 로고
    • Complexity pursuit: Separating interesting components from time-series
    • A. Hyvarinen. Complexity pursuit: Separating interesting components from time-series. Neural Computation, 13:883-898, 2001.
    • (2001) Neural Computation , vol.13 , pp. 883-898
    • Hyvarinen, A.1
  • 12
    • 84900024248 scopus 로고    scopus 로고
    • Technical, Faculty of Information Technology, Helsinki University of Technology, Finland
    • A. Hyvarinen and E. Oja. A fast fixed point algorithm for ICA. Technical Report A-35, Faculty of Information Technology, Helsinki University of Technology, Finland, 1996.
    • (1996) A Fast Fixed Point Algorithm for ICA
    • Hyvarinen, A.1    Oja, E.2
  • 13
    • 0031999294 scopus 로고    scopus 로고
    • Independent component analysis by general nonlinear Hebbian-like learning rules
    • A. Hyvarinen and E. Oja. Independent component analysis by general nonlinear Hebbian-like learning rules. Signal Processing, 64:301-313, 1998.
    • (1998) Signal Processing , vol.64 , pp. 301-313
    • Hyvarinen, A.1    Oja, E.2
  • 14
    • 0026191274 scopus 로고
    • Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture
    • C. Jutten and J. Herault. Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. Signal Processing, 24:1-20, 1991.
    • (1991) Signal Processing , vol.24 , pp. 1-20
    • Jutten, C.1    Herault, J.2
  • 15
    • 0028272776 scopus 로고
    • Representation and separation of signals using nonlinear pca type learning
    • J. Karhunen and J. Joutsensalo. Representation and separation of signals using nonlinear pca type learning. Neural Networks, 7:113-127, 1994.
    • (1994) Neural Networks , vol.7 , pp. 113-127
    • Karhunen, J.1    Joutsensalo, J.2
  • 18
    • 0001036009 scopus 로고
    • A study of the predictability of a 28-variable atmospheric model
    • E. N. Lorenz. A study of the predictability of a 28-variable atmospheric model. Tellus, 17:321-329, 1965.
    • (1965) Tellus , vol.17 , pp. 321-329
    • Lorenz, E.N.1
  • 19
    • 0343191447 scopus 로고    scopus 로고
    • Nonlinear principal component analysis by neural networks: Theory and applications to the Lorentz system
    • A. H. Monahan. Nonlinear principal component analysis by neural networks: Theory and applications to the Lorentz system. Journal of Climate, 13:821-835, 2000.
    • (2000) Journal of Climate , vol.13 , pp. 821-835
    • Monahan, A.H.1
  • 21
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • E. Oja. A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 15:267-273, 1982.
    • (1982) Journal of Mathematical Biology , vol.15 , pp. 267-273
    • Oja, E.1
  • 24
    • 84983699895 scopus 로고    scopus 로고
    • Statistics of atmospheric correlations
    • M. S. Santhanam and P. K. Patra. Statistics of atmospheric correlations. Physical Review E, 64:016102-1-7, 2001.
    • (2001) Physical Review E , vol.64 , pp. 016102-17
    • Santhanam, M.S.1    Patra, P.K.2
  • 27
    • 0019704889 scopus 로고
    • Teleconnections in the geopotential height field during the northern hemisphere winter
    • J. M. Wallace and D. S. Gutzler. Teleconnections in the geopotential height field during the northern hemisphere winter. Monthly Weather Review, 109:784-812, 1981.
    • (1981) Monthly Weather Review , vol.109 , pp. 784-812
    • Wallace, J.M.1    Gutzler, D.S.2
  • 29
    • 0000056917 scopus 로고    scopus 로고
    • Adaptive on-line learning algorithms for blind separation - Maximum entropy and minimum mutual information
    • H. H. Yang and S.-I. Amari. Adaptive on-line learning algorithms for blind separation - maximum entropy and minimum mutual information. Neural Computation, 9:1457-1482, 1997.
    • (1997) Neural Computation , vol.9 , pp. 1457-1482
    • Yang, H.H.1    Amari, S.-I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.