-
1
-
-
0002725153
-
Ice floe identification in satellite images using mathematical morphology and clustering about principal curves
-
Banfield, J. D., and A. E. Raferty, 1992: Ice floe identification in satellite images using mathematical morphology and clustering about principal curves. J. Amer. Stat. Assoc., 87, 7-16.
-
(1992)
J. Amer. Stat. Assoc.
, vol.87
, pp. 7-16
-
-
Banfield, J.D.1
Raferty, A.E.2
-
2
-
-
0023480259
-
Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns
-
Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 1083-1126.
-
(1987)
Mon. Wea. Rev.
, vol.115
, pp. 1083-1126
-
-
Barnston, A.G.1
Livezey, R.E.2
-
3
-
-
0027070241
-
Prediction of ENSO episodes using canonical correlation analysis
-
_, and C. F. Ropelewski, 1992: Prediction of ENSO episodes using canonical correlation analysis. J. Climate, 5, 1316-1345.
-
(1992)
J. Climate
, vol.5
, pp. 1316-1345
-
-
Ropelewski, C.F.1
-
4
-
-
84972513393
-
Statistics, probability, and chaos
-
Berliner, L. M., 1992: Statistics, probability, and chaos. Stat. Sci., 7, 69-122.
-
(1992)
Stat. Sci.
, vol.7
, pp. 69-122
-
-
Berliner, L.M.1
-
6
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
Cybenko, G., 1989: Approximation by superpositions of a sigmoidal function. Math. Contrib. Signals Syst., 2, 303-314.
-
(1989)
Math. Contrib. Signals Syst.
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
8
-
-
0043015539
-
Nonlinear principal component analysis - Based on principal curves and neural networks
-
Dong, D., and T. J. McAvoy, 1996: Nonlinear principal component analysis - Based on principal curves and neural networks. Comp. Chem. Eng., 20, 65-78.
-
(1996)
Comp. Chem. Eng.
, vol.20
, pp. 65-78
-
-
Dong, D.1
McAvoy, T.J.2
-
9
-
-
0027294340
-
Improving model selection by nonconvergent methods
-
Finnoff, W., F. Hergert, and H. G. Zimmermann, 1996: Improving model selection by nonconvergent methods. Neural Networks, 6, 771-783.
-
(1996)
Neural Networks
, vol.6
, pp. 771-783
-
-
Finnoff, W.1
Hergert, F.2
Zimmermann, H.G.3
-
10
-
-
0031254418
-
Nonlinear principal components analysis of neuronal spike train data
-
Fotheringhame, D., and R. Baddeley, 1997: Nonlinear principal components analysis of neuronal spike train data. Biol. Cybernetics, 77, 282-288.
-
(1997)
Biol. Cybernetics
, vol.77
, pp. 282-288
-
-
Fotheringhame, D.1
Baddeley, R.2
-
13
-
-
0032466364
-
Applying neural network models to prediction and data analysis in meteorology and oceanography
-
Hsieh, W. W., and B. Tang, 1998: Applying neural network models to prediction and data analysis in meteorology and oceanography. Bull. Amer. Meteor. Soc., 79, 1855-1870.
-
(1998)
Bull. Amer. Meteor. Soc.
, vol.79
, pp. 1855-1870
-
-
Hsieh, W.W.1
Tang, B.2
-
14
-
-
0026113980
-
Nonlinear principal component analysis using autoassociative neural networks
-
Kramer, M. A., 1991: Nonlinear principal component analysis using autoassociative neural networks. AIChE J., 37, 233-243.
-
(1991)
AIChE J.
, vol.37
, pp. 233-243
-
-
Kramer, M.A.1
-
16
-
-
0003519658
-
-
MIT Department of Meteorology, Statistical Forecast Project Rep. 1, 49 pp. Available from Dept. of Meteorology, MIT, Massachusetts Ave., Cambridge, MA 02139
-
Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. MIT Department of Meteorology, Statistical Forecast Project Rep. 1, 49 pp. [Available from Dept. of Meteorology, MIT, Massachusetts Ave., Cambridge, MA 02139.]
-
(1956)
Empirical Orthogonal Functions and Statistical Weather Prediction
-
-
Lorenz, E.N.1
-
17
-
-
0000241853
-
Deterministic aperiodic flow
-
_, 1963: Deterministic aperiodic flow. J. Atmos. Sci., 20, 131-141.
-
(1963)
J. Atmos. Sci.
, vol.20
, pp. 131-141
-
-
-
18
-
-
0031646493
-
Limitations of nonlinear PCA as performed with generic neural networks
-
Malthouse, E. C., 1998: Limitations of nonlinear PCA as performed with generic neural networks. IEEE Trans. Neural Networks, 9, 165-173.
-
(1998)
IEEE Trans. Neural Networks
, vol.9
, pp. 165-173
-
-
Malthouse, E.C.1
-
19
-
-
0008838023
-
North pacific thermocline variations on ENSO timescales
-
Miller, A. J., W. B. White, and D. R. Cayan, 1997: North Pacific thermocline variations on ENSO timescales. J. Phys. Oceanogr., 27, 2023-2039.
-
(1997)
J. Phys. Oceanogr.
, vol.27
, pp. 2023-2039
-
-
Miller, A.J.1
White, W.B.2
Cayan, D.R.3
-
20
-
-
0023496661
-
Statistics and dynamics of persistent anomalies
-
Mo, K. C., and M. Ghil, 1987: Statistics and dynamics of persistent anomalies. J. Atmos. Sci., 44, 877-901.
-
(1987)
J. Atmos. Sci.
, vol.44
, pp. 877-901
-
-
Mo, K.C.1
Ghil, M.2
-
21
-
-
0021386956
-
Empirical orthogonal functions and normal modes
-
North, G. R., 1984: Empirical orthogonal functions and normal modes. J. Atmos. Sci., 41, 879-887.
-
(1984)
J. Atmos. Sci.
, vol.41
, pp. 879-887
-
-
North, G.R.1
-
22
-
-
0343416807
-
The nonlinear PCA learning rule in independent component analysis
-
Oja, E., 1997: The nonlinear PCA learning rule in independent component analysis. Neurocomputing, 17, 25-45.
-
(1997)
Neurocomputing
, vol.17
, pp. 25-45
-
-
Oja, E.1
-
23
-
-
0038915782
-
-
Helsinki University of Technology Tech. Rep. A18. 25 pp. Available from Laboratory of Computer and Information Sciences, Helsinki University of Technology, Rakentajanaukio 2C, SF-02150, Espoo, Finland
-
_, and J. Karhunen, 1993: Nonlinear PCA: Algorithms and applications. Helsinki University of Technology Tech. Rep. A18. 25 pp. [Available from Laboratory of Computer and Information Sciences, Helsinki University of Technology, Rakentajanaukio 2C, SF-02150, Espoo, Finland.]
-
(1993)
Nonlinear PCA: Algorithms and Applications
-
-
Karhunen, J.1
-
25
-
-
0003474751
-
-
Cambridge University Press, 994 pp.
-
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992: Numerical Recipes in C. Cambridge University Press, 994 pp.
-
(1992)
Numerical Recipes in C
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
26
-
-
0024883243
-
Optimal unsupervised learning in a single-layer linear feedforward neural network
-
Sanger, T., 1989: Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks, 2, 459-473.
-
(1989)
Neural Networks
, vol.2
, pp. 459-473
-
-
Sanger, T.1
-
27
-
-
0343609238
-
-
PCMDI Tech. Rep. 29, 21 pp. Available from Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550
-
Sengupta, S. K., and J. S. Boyle, 1995: Nonlinear principal component analysis of climate data. PCMDI Tech. Rep. 29, 21 pp. [Available from Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550.]
-
(1995)
Nonlinear Principal Component Analysis of Climate Data
-
-
Sengupta, S.K.1
Boyle, J.S.2
-
28
-
-
0031777214
-
Forecasting ENSO events: A neural network - Extended EOF approach
-
Tangang, F. T., B. Tang, A. H. Monahan, and W. W. Hsieh, 1998: Forecasting ENSO events: A neural network - Extended EOF approach. J. Climate, 11, 29-41.
-
(1998)
J. Climate
, vol.11
, pp. 29-41
-
-
Tangang, F.T.1
Tang, B.2
Monahan, A.H.3
Hsieh, W.W.4
|