메뉴 건너뛰기




Volumn 13, Issue 4, 2000, Pages 821-835

Nonlinear principal component analysis by neural networks: Theory and application to the Lorenz system

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; DATA REDUCTION; FEATURE EXTRACTION; FEEDFORWARD NEURAL NETWORKS; STATISTICAL METHODS;

EID: 0343191447     PISSN: 08948755     EISSN: None     Source Type: Journal    
DOI: 10.1175/1520-0442(2000)013<0821:NPCABN>2.0.CO;2     Document Type: Article
Times cited : (124)

References (30)
  • 1
    • 0002725153 scopus 로고
    • Ice floe identification in satellite images using mathematical morphology and clustering about principal curves
    • Banfield, J. D., and A. E. Raferty, 1992: Ice floe identification in satellite images using mathematical morphology and clustering about principal curves. J. Amer. Stat. Assoc., 87, 7-16.
    • (1992) J. Amer. Stat. Assoc. , vol.87 , pp. 7-16
    • Banfield, J.D.1    Raferty, A.E.2
  • 2
    • 0023480259 scopus 로고
    • Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns
    • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 1083-1126.
    • (1987) Mon. Wea. Rev. , vol.115 , pp. 1083-1126
    • Barnston, A.G.1    Livezey, R.E.2
  • 3
    • 0027070241 scopus 로고
    • Prediction of ENSO episodes using canonical correlation analysis
    • _, and C. F. Ropelewski, 1992: Prediction of ENSO episodes using canonical correlation analysis. J. Climate, 5, 1316-1345.
    • (1992) J. Climate , vol.5 , pp. 1316-1345
    • Ropelewski, C.F.1
  • 4
    • 84972513393 scopus 로고
    • Statistics, probability, and chaos
    • Berliner, L. M., 1992: Statistics, probability, and chaos. Stat. Sci., 7, 69-122.
    • (1992) Stat. Sci. , vol.7 , pp. 69-122
    • Berliner, L.M.1
  • 6
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko, G., 1989: Approximation by superpositions of a sigmoidal function. Math. Contrib. Signals Syst., 2, 303-314.
    • (1989) Math. Contrib. Signals Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 8
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis - Based on principal curves and neural networks
    • Dong, D., and T. J. McAvoy, 1996: Nonlinear principal component analysis - Based on principal curves and neural networks. Comp. Chem. Eng., 20, 65-78.
    • (1996) Comp. Chem. Eng. , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 9
    • 0027294340 scopus 로고    scopus 로고
    • Improving model selection by nonconvergent methods
    • Finnoff, W., F. Hergert, and H. G. Zimmermann, 1996: Improving model selection by nonconvergent methods. Neural Networks, 6, 771-783.
    • (1996) Neural Networks , vol.6 , pp. 771-783
    • Finnoff, W.1    Hergert, F.2    Zimmermann, H.G.3
  • 10
    • 0031254418 scopus 로고    scopus 로고
    • Nonlinear principal components analysis of neuronal spike train data
    • Fotheringhame, D., and R. Baddeley, 1997: Nonlinear principal components analysis of neuronal spike train data. Biol. Cybernetics, 77, 282-288.
    • (1997) Biol. Cybernetics , vol.77 , pp. 282-288
    • Fotheringhame, D.1    Baddeley, R.2
  • 13
    • 0032466364 scopus 로고    scopus 로고
    • Applying neural network models to prediction and data analysis in meteorology and oceanography
    • Hsieh, W. W., and B. Tang, 1998: Applying neural network models to prediction and data analysis in meteorology and oceanography. Bull. Amer. Meteor. Soc., 79, 1855-1870.
    • (1998) Bull. Amer. Meteor. Soc. , vol.79 , pp. 1855-1870
    • Hsieh, W.W.1    Tang, B.2
  • 14
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Kramer, M. A., 1991: Nonlinear principal component analysis using autoassociative neural networks. AIChE J., 37, 233-243.
    • (1991) AIChE J. , vol.37 , pp. 233-243
    • Kramer, M.A.1
  • 16
    • 0003519658 scopus 로고
    • MIT Department of Meteorology, Statistical Forecast Project Rep. 1, 49 pp. Available from Dept. of Meteorology, MIT, Massachusetts Ave., Cambridge, MA 02139
    • Lorenz, E. N., 1956: Empirical orthogonal functions and statistical weather prediction. MIT Department of Meteorology, Statistical Forecast Project Rep. 1, 49 pp. [Available from Dept. of Meteorology, MIT, Massachusetts Ave., Cambridge, MA 02139.]
    • (1956) Empirical Orthogonal Functions and Statistical Weather Prediction
    • Lorenz, E.N.1
  • 17
    • 0000241853 scopus 로고
    • Deterministic aperiodic flow
    • _, 1963: Deterministic aperiodic flow. J. Atmos. Sci., 20, 131-141.
    • (1963) J. Atmos. Sci. , vol.20 , pp. 131-141
  • 18
    • 0031646493 scopus 로고    scopus 로고
    • Limitations of nonlinear PCA as performed with generic neural networks
    • Malthouse, E. C., 1998: Limitations of nonlinear PCA as performed with generic neural networks. IEEE Trans. Neural Networks, 9, 165-173.
    • (1998) IEEE Trans. Neural Networks , vol.9 , pp. 165-173
    • Malthouse, E.C.1
  • 19
    • 0008838023 scopus 로고    scopus 로고
    • North pacific thermocline variations on ENSO timescales
    • Miller, A. J., W. B. White, and D. R. Cayan, 1997: North Pacific thermocline variations on ENSO timescales. J. Phys. Oceanogr., 27, 2023-2039.
    • (1997) J. Phys. Oceanogr. , vol.27 , pp. 2023-2039
    • Miller, A.J.1    White, W.B.2    Cayan, D.R.3
  • 20
    • 0023496661 scopus 로고
    • Statistics and dynamics of persistent anomalies
    • Mo, K. C., and M. Ghil, 1987: Statistics and dynamics of persistent anomalies. J. Atmos. Sci., 44, 877-901.
    • (1987) J. Atmos. Sci. , vol.44 , pp. 877-901
    • Mo, K.C.1    Ghil, M.2
  • 21
    • 0021386956 scopus 로고
    • Empirical orthogonal functions and normal modes
    • North, G. R., 1984: Empirical orthogonal functions and normal modes. J. Atmos. Sci., 41, 879-887.
    • (1984) J. Atmos. Sci. , vol.41 , pp. 879-887
    • North, G.R.1
  • 22
    • 0343416807 scopus 로고    scopus 로고
    • The nonlinear PCA learning rule in independent component analysis
    • Oja, E., 1997: The nonlinear PCA learning rule in independent component analysis. Neurocomputing, 17, 25-45.
    • (1997) Neurocomputing , vol.17 , pp. 25-45
    • Oja, E.1
  • 23
    • 0038915782 scopus 로고
    • Helsinki University of Technology Tech. Rep. A18. 25 pp. Available from Laboratory of Computer and Information Sciences, Helsinki University of Technology, Rakentajanaukio 2C, SF-02150, Espoo, Finland
    • _, and J. Karhunen, 1993: Nonlinear PCA: Algorithms and applications. Helsinki University of Technology Tech. Rep. A18. 25 pp. [Available from Laboratory of Computer and Information Sciences, Helsinki University of Technology, Rakentajanaukio 2C, SF-02150, Espoo, Finland.]
    • (1993) Nonlinear PCA: Algorithms and Applications
    • Karhunen, J.1
  • 26
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward neural network
    • Sanger, T., 1989: Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks, 2, 459-473.
    • (1989) Neural Networks , vol.2 , pp. 459-473
    • Sanger, T.1
  • 27
    • 0343609238 scopus 로고
    • PCMDI Tech. Rep. 29, 21 pp. Available from Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550
    • Sengupta, S. K., and J. S. Boyle, 1995: Nonlinear principal component analysis of climate data. PCMDI Tech. Rep. 29, 21 pp. [Available from Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550.]
    • (1995) Nonlinear Principal Component Analysis of Climate Data
    • Sengupta, S.K.1    Boyle, J.S.2
  • 28
    • 0031777214 scopus 로고    scopus 로고
    • Forecasting ENSO events: A neural network - Extended EOF approach
    • Tangang, F. T., B. Tang, A. H. Monahan, and W. W. Hsieh, 1998: Forecasting ENSO events: A neural network - Extended EOF approach. J. Climate, 11, 29-41.
    • (1998) J. Climate , vol.11 , pp. 29-41
    • Tangang, F.T.1    Tang, B.2    Monahan, A.H.3    Hsieh, W.W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.