메뉴 건너뛰기




Volumn 5, Issue 4, 2006, Pages 825-832

A probabilistic SOM-kMER model for intelligent data analysis

Author keywords

Data classification; Data visualization; Kernel based maximum entropy learning rule; Self organizing map; Topographic map

Indexed keywords

COMPUTER SIMULATION; DATA REDUCTION; LEARNING SYSTEMS; MATHEMATICAL MODELS; NEURAL NETWORKS; PROBABILITY; SELF ORGANIZING MAPS; VISUALIZATION;

EID: 33645118408     PISSN: 11092777     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (3)

References (25)
  • 1
    • 0024196297 scopus 로고
    • An overview of mapping techniques for exploratory pattern analysis
    • W. Siedlecki, K. Siedlecka and J. Sklansky, An overview of mapping techniques for exploratory pattern analysis. Pattern Recognition, Vol. 21, No.5, 1988, pp. 411-429.
    • (1988) Pattern Recognition , vol.21 , Issue.5 , pp. 411-429
    • Siedlecki, W.1    Siedlecka, K.2    Sklansky, J.3
  • 2
    • 33747438328 scopus 로고
    • Artificial neural network for nonlinear projection of multivariate data
    • A.K. Jain, J. Mao, Artificial neural network for nonlinear projection of multivariate data. Proc. IEEE Int. Joint Conf. Neural Networks, vol. 3, 1992, pp.335-340.
    • (1992) Proc. IEEE Int. Joint Conf. Neural Networks , vol.3 , pp. 335-340
    • Jain, A.K.1    Mao, J.2
  • 6
    • 0003410791 scopus 로고
    • Vol. 30 of Springer Series in Information Sciences, Springer, Berlin
    • T. Kohonen. Self-organizing Maps. Vol. 30 of Springer Series in Information Sciences, Springer, Berlin, 1995
    • (1995) Self-Organizing Maps
    • Kohonen, T.1
  • 8
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • Elsevier Science
    • J. Vesanto, SOM-based data visualization methods, In Intelligent Data Analysis, Elsevier Science, 1999, Vol. 3, No. 2, pp. 111-126.
    • (1999) Intelligent Data Analysis , vol.3 , Issue.2 , pp. 111-126
    • Vesanto, J.1
  • 9
    • 0002656190 scopus 로고
    • Feature discovery by competitive learning
    • D.E. Rumelhart and D. Zipser, Feature discovery by competitive learning. Cognitive Science, Vol. 9, 1985, pp.75-112.
    • (1985) Cognitive Science , vol.9 , pp. 75-112
    • Rumelhart, D.E.1    Zipser, D.2
  • 10
    • 0001449448 scopus 로고    scopus 로고
    • Controlling the magnification factor of self-organizing feature maps
    • H-U, Bauer, R. Der and M. Herrmann, Controlling the magnification factor of self-organizing feature maps, Neural Computation, Vol. 8, 1996, pp.757-771.
    • (1996) Neural Computation , vol.8 , pp. 757-771
    • Bauer, H.-U.1    Der, R.2    Herrmann, M.3
  • 11
    • 0029217605 scopus 로고
    • Globally-ordered topology-preserving maps achieved with a learning rule performing local weight updates only
    • Cambridge, MA
    • M.M. Van Hulle, Globally-ordered topology-preserving maps achieved with a learning rule performing local weight updates only, Proc. IEEE NNSP95, Cambridge, MA, 1995, pp. 95-104.
    • (1995) Proc. IEEE NNSP95 , pp. 95-104
    • Van Hulle, M.M.1
  • 12
    • 0001405580 scopus 로고    scopus 로고
    • Kernel-based equiprobabilistic topographic map formation
    • M.M. Van Hulle, Kernel-based equiprobabilistic topographic map formation, Neural Computation, Vol.10, No.7, 1998, pp.1847-1871.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1847-1871
    • Van Hulle, M.M.1
  • 13
    • 0000620924 scopus 로고    scopus 로고
    • Faithful representation of separable distributions
    • J.K. Lin, D.G. Grier and J.D. Cowan, Faithful representation of separable distributions, Neural Computation Vol. 9, 1997, pp.1305-1320.
    • (1997) Neural Computation , vol.9 , pp. 1305-1320
    • Lin, J.K.1    Grier, D.G.2    Cowan, J.D.3
  • 15
    • 0036790769 scopus 로고    scopus 로고
    • How to make large self-organizing maps for nonvectorial data
    • T. Kohonen and P. Somervuo, How to make large self-organizing maps for nonvectorial data. Neural Networks, Vol.15, 2002, pp. 945-952.
    • (2002) Neural Networks , vol.15 , pp. 945-952
    • Kohonen, T.1    Somervuo, P.2
  • 16
    • 0030230825 scopus 로고    scopus 로고
    • A clustering method based on the estimation of the probability density function and on the skeleton by influence zones: Application to image processing
    • M. Herbin, N. Bonnet and P. Vautrot, A clustering method based on the estimation of the probability density function and on the skeleton by influence zones: Application to image processing, Pattern Recognition Letters, 1996, 17, pp. 1141-1150.
    • (1996) Pattern Recognition Letters , vol.17 , pp. 1141-1150
    • Herbin, M.1    Bonnet, N.2    Vautrot, P.3
  • 18
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • D.F. Specht, Probabilistic neural networks, Neural Networks, Vol.3, 1990, pp. 109-118.
    • (1990) Neural Networks , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 19
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • E. Parzen, On estimation of a probability density function and mode. Annals of Mathematical Statistics, Vol. 33, 1962, pp. 1065-1076.
    • (1962) Annals of Mathematical Statistics , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 22
    • 84902161562 scopus 로고    scopus 로고
    • GTM: A principled alternative to the self-organizing map
    • C.M. Bishop, M. Svensén and CKI. Williams, GTM: A principled alternative to the self-organizing map. Proc. ICANN'96, 1996, pp. 165-170.
    • (1996) Proc. ICANN'96 , pp. 165-170
    • Bishop, C.M.1    Svensén, M.2    Williams, C.K.I.3
  • 23
    • 33645130172 scopus 로고    scopus 로고
    • Supervised classifier performance on the UCI database
    • M.Sc Thesis, Department of Computer Science, University of Adelaide, Australia
    • A. Hoang, Supervised classifier performance on the UCI database. M.Sc Thesis, Department of Computer Science, University of Adelaide, Australia, 1997.
    • (1997)
    • Hoang, A.1
  • 24
    • 33645121881 scopus 로고    scopus 로고
    • System Description and Operating Procedures
    • System Description and Operating Procedures (1999). Prai Power Station Stage 3, 14
    • (1999) Prai Power Station Stage 3 , pp. 14


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.