-
2
-
-
37049093541
-
-
b) W. D. Ollis, M. Rey, I. O. Sutherland, J. Chem. Soc., Perkin Trans. 1 1983, 1009.
-
(1983)
J. Chem. Soc., Perkin Trans. 1
, pp. 1009
-
-
Ollis, W.D.1
Rey, M.2
Sutherland, I.O.3
-
4
-
-
0001014629
-
-
d) I. G. Stará, I. Starý, M. Tichý, J. Závada, V. Hanǔs, J. Am. Chem. Soc. 1994, 116, 5084.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 5084
-
-
Stará, I.G.1
Starý, I.2
Tichý, M.3
Závada, J.4
Hanǔs, V.5
-
6
-
-
0024459718
-
-
b) E. Vedejs, R. A. Buchanan, P. C. Conrad, G. P. Meier, M. J. Mullins, J. G. Schaffhausen, C. E. Schwartz, J. Am. Chem. Soc. 1989, 111, 8421.
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 8421
-
-
Vedejs, E.1
Buchanan, R.A.2
Conrad, P.C.3
Meier, G.P.4
Mullins, M.J.5
Schaffhausen, J.G.6
Schwartz, C.E.7
-
9
-
-
0344234232
-
-
a) Y. Okazaki, F. Ando, J. Koketsu, Bull. Chem. Soc. Jpn. 2003, 76, 2155.
-
(2003)
Bull. Chem. Soc. Jpn.
, vol.76
, pp. 2155
-
-
Okazaki, Y.1
Ando, F.2
Koketsu, J.3
-
10
-
-
4944235018
-
-
b) Y. Okazaki, F. Ando, J. Koketsu, Bull. Chem. Soc. Jpn. 2004, 77, 1687.
-
(2004)
Bull. Chem. Soc. Jpn.
, vol.77
, pp. 1687
-
-
Okazaki, Y.1
Ando, F.2
Koketsu, J.3
-
11
-
-
33645111509
-
-
note
-
9NS: C, 56.65; H, 7.13; N, 11.01%. Found: C, 56.31; H, 7.32; N, 10.59%.
-
-
-
-
12
-
-
0000293748
-
-
A. Padwa, Y. Y. Chen, W. Dent, H. Nimmesgern, J. Org. Chem. 1985, 50, 4006.
-
(1985)
J. Org. Chem.
, vol.50
, pp. 4006
-
-
Padwa, A.1
Chen, Y.Y.2
Dent, W.3
Nimmesgern, H.4
-
13
-
-
0005885566
-
-
J. Svoboda, Z. Kocfeldová, J. Paleček, Collect. Czech. Chem. Commun. 1988, 53, 822.
-
(1988)
Collect. Czech. Chem. Commun.
, vol.53
, pp. 822
-
-
Svoboda, J.1
Kocfeldová, Z.2
Paleček, J.3
-
14
-
-
0032540674
-
-
K. Makita, J. Koketsu, F. Ando, Y. Ninomiya, N. Koga, J. Am. Chem. Soc. 1998, 120, 5764.
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 5764
-
-
Makita, K.1
Koketsu, J.2
Ando, F.3
Ninomiya, Y.4
Koga, N.5
-
15
-
-
33645129540
-
-
note
-
Method of Calculations; The structure of all the reactions, products, and TSs were optimized using Gaussian03 program package at B3LYP density functional level together with the 6-31+G(d) basis set. In addition, relative energies were also computed at the same level. Zero point energy corrections were also computed and used to obtain the energetics of the reaction. The radical dissociation products were optimized by the unrestricted B3LYP method. Vibrational analysis was carried out at the B3LYP level to characterize all the stationary points as minima or saddle points. When the B3LYP (RB3LYP) wave functions for the TSs were unstable, we carried out the geometry determination of the TS structure by using the theory of UB3LYP density function.
-
-
-
|