메뉴 건너뛰기




Volumn 1988, Issue , 2001, Pages 475-481

A generalized GMRES iterative method

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER SCIENCE; COMPUTERS;

EID: 33645087177     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-45262-1_55     Document Type: Conference Paper
Times cited : (1)

References (14)
  • 3
    • 0033456602 scopus 로고    scopus 로고
    • Generalizations and modifications of the GMRES iterative method
    • Chen, J.-Y., Kincaid, D. R., Young, D. M.: Generalizations and modifications of the GMRES iterative method. Numerical Algorithms 21 (1999) 119-146
    • (1999) Numerical Algorithms , vol.21 , pp. 119-146
    • Chen, J.-Y.1    Kincaid, D.R.2    Young, D.M.3
  • 4
    • 25444452938 scopus 로고
    • QMR: A quasi-minimal residual method for non-hermitian linear systems
    • Freund, R. W., Nachtigal, N. M.: QMR: A quasi-minimal residual method for non-hermitian linear systems. Numerische Mathematik 60 315-339 (1991)
    • (1991) Numerische Mathematik , vol.60 , pp. 315-339
    • Freund, R.W.1    Nachtigal, N.M.2
  • 7
    • 0000059778 scopus 로고
    • On the simplification of generalized conjugate gradient methods for nonsymmetrizable linear systems
    • Jea, K. C., Young, D. M.: On the simplification of generalized conjugate gradient methods for nonsymmetrizable linear systems. Linear Algebra Appl. 52/53 (1983) 399-417
    • (1983) Linear Algebra Appl , vol.52-53 , pp. 399-417
    • Jea, K.C.1    Young, D.M.2
  • 9
    • 0000048673 scopus 로고
    • GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
    • Saad, Y., Schultz, M. H.: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 7 (3) (1986) 856-869
    • (1986) SIAM J. Sci. Statist. Comput. , vol.7 , Issue.3 , pp. 856-869
    • Saad, Y.1    Schultz, M.H.2
  • 10
    • 0002716979 scopus 로고
    • CGS: A fast Lanczos-type solver for nonsymmetric linear systems. SIAM
    • Sonneveld, P.: CGS: A fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 10 (1) 36-52 (1989)
    • (1989) J. Sci. Stat. Comput , vol.10 , Issue.1 , pp. 36-52
    • Sonneveld, P.1
  • 11
    • 0000005482 scopus 로고
    • BI-CGSTAB: A fast and smoothly converging variant of BICG for the solution of nonsymmetric linear systems
    • Van Der Vorst, H. A.: BI-CGSTAB: A fast and smoothly converging variant of BICG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13 (2) 631-644 (1992)
    • (1992) SIAM J. Sci. Stat. Comput , vol.13 , Issue.2 , pp. 631-644
    • Van Der Vorst, H.A.1
  • 12
    • 84944072218 scopus 로고
    • Generalized conjugate gradient acceleration of iterative methods
    • Report CNA-162, Center for Numerical Analysis, University of Texas at Austin
    • Young, D. M., Hayes, L. J., Jea, K. C.: Generalized conjugate gradient acceleration of iterative methods. Part I: The nonsymmetrizable case, Report CNA-162, Center for Numerical Analysis, University of Texas at Austin (1981)
    • (1981) Part I: The Nonsymmetrizable Case
    • Young, D.M.1    Hayes, L.J.2    Jea, K.C.3
  • 13
    • 0001010277 scopus 로고
    • Generalized conjugate gradient acceleration of iterative methods
    • Young, D. M., Jea, K. C.: Generalized conjugate gradient acceleration of iterative methods. Linear Algebra Appl. 34 (1980) 159-194
    • (1980) Linear Algebra Appl , vol.34 , pp. 159-194
    • Young, D.M.1    Jea, K.C.2
  • 14
    • 84944072218 scopus 로고
    • Generalized conjugate gradient acceleration of iterative methods
    • Report CNA-163, Center for Numerical Analysis, University of Texas at Austin
    • Young, D. M., Jea, K. C.: Generalized conjugate gradient acceleration of iterative methods. Part II: The nonsymmetrizable case, Report CNA-163, Center for Numerical Analysis, University of Texas at Austin (1981)
    • (1981) Part II: The Nonsymmetrizable Case
    • Young, D.M.1    Jea, K.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.