-
2
-
-
0002807741
-
The principle of minimized iteration in the solution of the matrix eigenvalue problem
-
W.E. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenvalue problem, Quart. Appl. Math. 9 (1951) 17-29.
-
(1951)
Quart. Appl. Math.
, vol.9
, pp. 17-29
-
-
Arnoldi, W.E.1
-
4
-
-
0013452717
-
-
Report CNA-285, Center for Numerical Analysis, University of Texas at Austin Ph.D. thesis, Dept. of Mathematics
-
J.-Y. Chen, Iterative solution of large sparse nonsymmetric linear systems, Report CNA-285, Center for Numerical Analysis, University of Texas at Austin (1997) (Ph.D. thesis, Dept. of Mathematics).
-
(1997)
Iterative Solution of Large Sparse Nonsymmetric Linear Systems
-
-
Chen, J.-Y.1
-
5
-
-
0002308279
-
Conjugate gradient methods for indefinite systems
-
Lecture Notes in Mathematics, Springer, New York
-
R. Fletcher, Conjugate gradient methods for indefinite systems, in: Proc. of the Dundee Conf. on Numerical Analysis (1975), Lecture Notes in Mathematics, Vol. 506 (Springer, New York, 1976) pp. 73-89.
-
(1975)
Proc. of the Dundee Conf. on Numerical Analysis
, vol.506
, pp. 73-89
-
-
Fletcher, R.1
-
6
-
-
25444452938
-
QMR: A quasi-minimal residual method for non-Hermitian linear systems
-
R.W. Freund and N.M. Nachtigal, QMR: A quasi-minimal residual method for non-Hermitian linear systems, Numer. Math. 60 (1991) 315-339.
-
(1991)
Numer. Math.
, vol.60
, pp. 315-339
-
-
Freund, R.W.1
Nachtigal, N.M.2
-
7
-
-
0000135303
-
Methods of conjugate gradients for solving linear systems
-
M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. National Bureau Standards 49(6) (1952) 409-436.
-
(1952)
J. Res. National Bureau Standards
, vol.49
, Issue.6
, pp. 409-436
-
-
Hestenes, M.R.1
Stiefel, E.2
-
8
-
-
0013452718
-
-
Report CNA-176, Center for Numerical Analysis, University of Texas at Austin Ph.D. thesis, Dept. of Mathematics
-
K.C. Jea, Generalized conjugate gradient acceleration of iterative methods, Report CNA-176, Center for Numerical Analysis, University of Texas at Austin (1982) (Ph.D. thesis, Dept. of Mathematics).
-
(1982)
Generalized Conjugate Gradient Acceleration of Iterative Methods
-
-
Jea, K.C.1
-
9
-
-
0000059778
-
On the simplification of generalized conjugate gradient methods for nonsymmetrizable linear systems
-
K.C. Jea and D.M. Young, On the simplification of generalized conjugate gradient methods for nonsymmetrizable linear systems, Linear Algebra Appl. 52/53 (1983) 399-417.
-
(1983)
Linear Algebra Appl.
, vol.52-53
, pp. 399-417
-
-
Jea, K.C.1
Young, D.M.2
-
11
-
-
0000048673
-
GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
-
Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7(3) (1986) 856-869.
-
(1986)
SIAM J. Sci. Statist. Comput.
, vol.7
, Issue.3
, pp. 856-869
-
-
Saad, Y.1
Schultz, M.H.2
-
12
-
-
0002716979
-
CGS: A fast Lanczos-type solver for nonsymmetric linear systems
-
P. Sonneveld, CGS: A fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 10(1) (1989) 36-52.
-
(1989)
SIAM J. Sci. Statist. Comput.
, vol.10
, Issue.1
, pp. 36-52
-
-
Sonneveld, P.1
-
13
-
-
0000005482
-
Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems
-
H.A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 13(2) (1992) 631-644.
-
(1992)
SIAM J. Sci. Statist. Comput.
, vol.13
, Issue.2
, pp. 631-644
-
-
Van Der Vorst, H.A.1
-
14
-
-
0016873451
-
ORTHOMIN: An iterative method for solving sparse sets of simultaneous linear equations
-
Society of Petroleum Engineers of the AIME, Paper SPE 5739
-
P.K.W. Vinsome, ORTHOMIN: An iterative method for solving sparse sets of simultaneous linear equations, in: 4th Symp. of Numerical Simulation Reservoir Performance, Society of Petroleum Engineers of the AIME, Paper SPE 5739 (1976).
-
(1976)
4th Symp. of Numerical Simulation Reservoir Performance
-
-
Vinsome, P.K.W.1
-
15
-
-
0000043097
-
Implementation of the GMRES method using Householder transformations
-
H.F. Walker, Implementation of the GMRES method using Householder transformations, SIAM J. Sci. Comput. 9 (1988) 152-163.
-
(1988)
SIAM J. Sci. Comput.
, vol.9
, pp. 152-163
-
-
Walker, H.F.1
-
16
-
-
0008368138
-
-
Report, Department of Mathematics and Statistics, Utah State University, Logan, UT
-
H.F. Walker and L. Zhou, A simpler GMRES, Report, Department of Mathematics and Statistics, Utah State University, Logan, UT (1992).
-
(1992)
A Simpler GMRES
-
-
Walker, H.F.1
Zhou, L.2
-
17
-
-
0004129628
-
-
Report CNA-162, Center for Numerical Analysis, University of Texas at Austin
-
D.M. Young, L.J. Hayes and K.C. Jea, Generalized conjugate gradient acceleration of iterative methods, Part I: The symmetrizable case, Report CNA-162, Center for Numerical Analysis, University of Texas at Austin (1981).
-
(1981)
Generalized Conjugate Gradient Acceleration of Iterative Methods, Part I: The Symmetrizable Case
-
-
Young, D.M.1
Hayes, L.J.2
Jea, K.C.3
-
18
-
-
0001010277
-
Generalized conjugate gradient acceleration of nonsymmetrizable iterative methods
-
D.M. Young and K.C. Jea, Generalized conjugate gradient acceleration of nonsymmetrizable iterative methods, Linear Algebra Appl. 34 (1980) 159-194.
-
(1980)
Linear Algebra Appl.
, vol.34
, pp. 159-194
-
-
Young, D.M.1
Jea, K.C.2
-
19
-
-
0004129628
-
-
Report CNA-163, Center for Numerical Analysis, University of Texas at Austin
-
D.M. Young and K.C. Jea, Generalized conjugate gradient acceleration of iterative methods, Part II: The nonsymmetrizable case, Report CNA-163, Center for Numerical Analysis, University of Texas at Austin (1981).
-
(1981)
Generalized Conjugate Gradient Acceleration of Iterative Methods, Part II: The Nonsymmetrizable Case
-
-
Young, D.M.1
Jea, K.C.2
|