메뉴 건너뛰기




Volumn 21, Issue 1-4, 1999, Pages 119-146

Generalizations and modifications of the GMRES iterative method

Author keywords

Galerkin condition; Generalized Minimum Residual (GMRES) method; Iterative methods; Lanczos type methods; Minimization condition

Indexed keywords


EID: 0033456602     PISSN: 10171398     EISSN: None     Source Type: Journal    
DOI: 10.1023/a:1019105328973     Document Type: Article
Times cited : (10)

References (19)
  • 2
    • 0002807741 scopus 로고
    • The principle of minimized iteration in the solution of the matrix eigenvalue problem
    • W.E. Arnoldi, The principle of minimized iteration in the solution of the matrix eigenvalue problem, Quart. Appl. Math. 9 (1951) 17-29.
    • (1951) Quart. Appl. Math. , vol.9 , pp. 17-29
    • Arnoldi, W.E.1
  • 4
    • 0013452717 scopus 로고    scopus 로고
    • Report CNA-285, Center for Numerical Analysis, University of Texas at Austin Ph.D. thesis, Dept. of Mathematics
    • J.-Y. Chen, Iterative solution of large sparse nonsymmetric linear systems, Report CNA-285, Center for Numerical Analysis, University of Texas at Austin (1997) (Ph.D. thesis, Dept. of Mathematics).
    • (1997) Iterative Solution of Large Sparse Nonsymmetric Linear Systems
    • Chen, J.-Y.1
  • 5
    • 0002308279 scopus 로고
    • Conjugate gradient methods for indefinite systems
    • Lecture Notes in Mathematics, Springer, New York
    • R. Fletcher, Conjugate gradient methods for indefinite systems, in: Proc. of the Dundee Conf. on Numerical Analysis (1975), Lecture Notes in Mathematics, Vol. 506 (Springer, New York, 1976) pp. 73-89.
    • (1975) Proc. of the Dundee Conf. on Numerical Analysis , vol.506 , pp. 73-89
    • Fletcher, R.1
  • 6
    • 25444452938 scopus 로고
    • QMR: A quasi-minimal residual method for non-Hermitian linear systems
    • R.W. Freund and N.M. Nachtigal, QMR: A quasi-minimal residual method for non-Hermitian linear systems, Numer. Math. 60 (1991) 315-339.
    • (1991) Numer. Math. , vol.60 , pp. 315-339
    • Freund, R.W.1    Nachtigal, N.M.2
  • 7
    • 0000135303 scopus 로고
    • Methods of conjugate gradients for solving linear systems
    • M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. National Bureau Standards 49(6) (1952) 409-436.
    • (1952) J. Res. National Bureau Standards , vol.49 , Issue.6 , pp. 409-436
    • Hestenes, M.R.1    Stiefel, E.2
  • 8
    • 0013452718 scopus 로고
    • Report CNA-176, Center for Numerical Analysis, University of Texas at Austin Ph.D. thesis, Dept. of Mathematics
    • K.C. Jea, Generalized conjugate gradient acceleration of iterative methods, Report CNA-176, Center for Numerical Analysis, University of Texas at Austin (1982) (Ph.D. thesis, Dept. of Mathematics).
    • (1982) Generalized Conjugate Gradient Acceleration of Iterative Methods
    • Jea, K.C.1
  • 9
    • 0000059778 scopus 로고
    • On the simplification of generalized conjugate gradient methods for nonsymmetrizable linear systems
    • K.C. Jea and D.M. Young, On the simplification of generalized conjugate gradient methods for nonsymmetrizable linear systems, Linear Algebra Appl. 52/53 (1983) 399-417.
    • (1983) Linear Algebra Appl. , vol.52-53 , pp. 399-417
    • Jea, K.C.1    Young, D.M.2
  • 11
    • 0000048673 scopus 로고
    • GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems
    • Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 7(3) (1986) 856-869.
    • (1986) SIAM J. Sci. Statist. Comput. , vol.7 , Issue.3 , pp. 856-869
    • Saad, Y.1    Schultz, M.H.2
  • 12
    • 0002716979 scopus 로고
    • CGS: A fast Lanczos-type solver for nonsymmetric linear systems
    • P. Sonneveld, CGS: A fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 10(1) (1989) 36-52.
    • (1989) SIAM J. Sci. Statist. Comput. , vol.10 , Issue.1 , pp. 36-52
    • Sonneveld, P.1
  • 13
    • 0000005482 scopus 로고
    • Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems
    • H.A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 13(2) (1992) 631-644.
    • (1992) SIAM J. Sci. Statist. Comput. , vol.13 , Issue.2 , pp. 631-644
    • Van Der Vorst, H.A.1
  • 14
    • 0016873451 scopus 로고
    • ORTHOMIN: An iterative method for solving sparse sets of simultaneous linear equations
    • Society of Petroleum Engineers of the AIME, Paper SPE 5739
    • P.K.W. Vinsome, ORTHOMIN: An iterative method for solving sparse sets of simultaneous linear equations, in: 4th Symp. of Numerical Simulation Reservoir Performance, Society of Petroleum Engineers of the AIME, Paper SPE 5739 (1976).
    • (1976) 4th Symp. of Numerical Simulation Reservoir Performance
    • Vinsome, P.K.W.1
  • 15
    • 0000043097 scopus 로고
    • Implementation of the GMRES method using Householder transformations
    • H.F. Walker, Implementation of the GMRES method using Householder transformations, SIAM J. Sci. Comput. 9 (1988) 152-163.
    • (1988) SIAM J. Sci. Comput. , vol.9 , pp. 152-163
    • Walker, H.F.1
  • 16
    • 0008368138 scopus 로고
    • Report, Department of Mathematics and Statistics, Utah State University, Logan, UT
    • H.F. Walker and L. Zhou, A simpler GMRES, Report, Department of Mathematics and Statistics, Utah State University, Logan, UT (1992).
    • (1992) A Simpler GMRES
    • Walker, H.F.1    Zhou, L.2
  • 18
    • 0001010277 scopus 로고
    • Generalized conjugate gradient acceleration of nonsymmetrizable iterative methods
    • D.M. Young and K.C. Jea, Generalized conjugate gradient acceleration of nonsymmetrizable iterative methods, Linear Algebra Appl. 34 (1980) 159-194.
    • (1980) Linear Algebra Appl. , vol.34 , pp. 159-194
    • Young, D.M.1    Jea, K.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.