-
1
-
-
28044459877
-
A perfectly matched layer for the absorption of electro-magnetic waves
-
J.-P. Berenger, "A perfectly matched layer for the absorption of electro-magnetic waves," J. Comput. Phys., vol. 114, no. 2, pp. 185-200, 1994.
-
(1994)
J. Comput. Phys.
, vol.114
, Issue.2
, pp. 185-200
-
-
Berenger, J.-P.1
-
2
-
-
33644976138
-
A 3-D perfectly matched medium from modified Maxwell's equations with stretched coordinates
-
W. C. Chew and W. H. Weedon, "A 3-D perfectly matched medium from modified Maxwell's equations with stretched coordinates," Microw. Opt., vol. 114, no. 2, pp. 185-200, 1994.
-
(1994)
Microw. Opt.
, vol.114
, Issue.2
, pp. 185-200
-
-
Chew, W.C.1
Weedon, W.H.2
-
3
-
-
0030384174
-
An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices
-
Dec.
-
S. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas Propag., vol. 44, no. 12, pp. 1630-1639, Dec. 1996.
-
(1996)
IEEE Trans. Antennas Propag.
, vol.44
, Issue.12
, pp. 1630-1639
-
-
Gedney, S.1
-
4
-
-
0029536351
-
Numerical implementation and performance of perfectly matched layer boundary condition for waveguide structures
-
Dec.
-
Z. Wu and J. Fang, "Numerical implementation and performance of perfectly matched layer boundary condition for waveguide structures," IEEE Trans. Microw. Theory Tech., vol. 43, no. 12, pp. 2676-2683, Dec. 1995.
-
(1995)
IEEE Trans. Microw. Theory Tech.
, vol.43
, Issue.12
, pp. 2676-2683
-
-
Wu, Z.1
Fang, J.2
-
5
-
-
0030387909
-
GT-PML: Generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids
-
Dec.
-
L. Zhao and A. Cangellaris, "GT-PML: Generalized theory of perfectly matched layers and its application to the reflectionless truncation of finite-difference time-domain grids," IEEE Trans. Microw. Theory Tech., vol. 44, no. 12, pp. 2555-2563, Dec. 1996.
-
(1996)
IEEE Trans. Microw. Theory Tech.
, vol.44
, Issue.12
, pp. 2555-2563
-
-
Zhao, L.1
Cangellaris, A.2
-
6
-
-
0029480058
-
A perfectly matched anisotropic absorber for use as an absorbing boundary condition
-
Dec.
-
Z. Sacks, D. Kingsland, R. Lee, and J.-F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propag., vol. 43, no. 12, pp. 1460-1463, Dec. 1995.
-
(1995)
IEEE Trans. Antennas Propag.
, vol.43
, Issue.12
, pp. 1460-1463
-
-
Sacks, Z.1
Kingsland, D.2
Lee, R.3
Lee, J.-F.4
-
7
-
-
18844401397
-
Perfectly matched layer in three dimensions for the time-domain finite element method applied to radiation problems
-
Apr.
-
T. Rylander and J.-M. Jin, "Perfectly matched layer in three dimensions for the time-domain finite element method applied to radiation problems," IEEE Trans. Antennas Propag., vol. 53, no. 4, pp. 1489-1499, Apr. 2005.
-
(2005)
IEEE Trans. Antennas Propag.
, vol.53
, Issue.4
, pp. 1489-1499
-
-
Rylander, T.1
Jin, J.-M.2
-
8
-
-
0031378325
-
Berenger absorbing boundary condition with time finite-volume scheme for triangular meshes
-
Dec.
-
F. Bonnet and F. Poupaud, "Berenger absorbing boundary condition with time finite-volume scheme for triangular meshes," Appl. Numer. Math., vol. 25, no. 4, pp. 333-354, Dec. 1997.
-
(1997)
Appl. Numer. Math.
, vol.25
, Issue.4
, pp. 333-354
-
-
Bonnet, F.1
Poupaud, F.2
-
9
-
-
84950425970
-
A three-dimensional modified finite volume technique for Maxwell's equations
-
N. K. Madsen and R. W. Ziolkowski, "A three-dimensional modified finite volume technique for Maxwell's equations," Electromagnetics, vol. 10, pp. 147-161, 1990.
-
(1990)
Electromagnetics
, vol.10
, pp. 147-161
-
-
Madsen, N.K.1
Ziolkowski, R.W.2
-
10
-
-
84939050081
-
A time-domain, finite-volume treatment for the Maxwell equations
-
V. Shankar, A. H. Mohammadian, and W. F. Hall, "A time-domain, finite-volume treatment for the Maxwell equations," Electromagnetics, vol. 10, pp. 127-145, 1990.
-
(1990)
Electromagnetics
, vol.10
, pp. 127-145
-
-
Shankar, V.1
Mohammadian, A.H.2
Hall, W.F.3
-
11
-
-
0041392084
-
-
S. M. Rao, Ed. New York: Academic, ch. 9
-
P. Bonnet, X. Ferneres, B. Michielsen, P. Klotz, and J. L. Roumiguiéres, Time Domain Electromagnetics, S. M. Rao, Ed. New York: Academic, 1997, ch. 9, pp. 307-367.
-
(1997)
Time Domain Electromagnetics
, pp. 307-367
-
-
Bonnet, P.1
Ferneres, X.2
Michielsen, B.3
Klotz, P.4
Roumiguiéres, J.L.5
-
12
-
-
1842526770
-
A generalized local time-step scheme for efficient FVTD simulations in strongly inhomogeneous meshes
-
Mar.
-
C. Fumeaux, D. Baumann, P. Leuchtmann, and R. Vahldieck, "A generalized local time-step scheme for efficient FVTD simulations in strongly inhomogeneous meshes," IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp. 1067-1076, Mar. 2004.
-
(2004)
IEEE Trans. Microw. Theory Tech.
, vol.52
, Issue.3
, pp. 1067-1076
-
-
Fumeaux, C.1
Baumann, D.2
Leuchtmann, P.3
Vahldieck, R.4
-
13
-
-
2442433925
-
Toward the ultimate conservative difference scheme (V): A second-order sequel to Godunov's method
-
B. V. Leer, "Toward the ultimate conservative difference scheme (V): A second-order sequel to Godunov's method," J. Comput. Phys., vol. 32, no. 1, pp. 101-136, 1979.
-
(1979)
J. Comput. Phys.
, vol.32
, Issue.1
, pp. 101-136
-
-
Leer, B.V.1
-
14
-
-
0000022776
-
A parallel time-domain Maxwell solver using upwind schemes and triangular meshes
-
J.-P. Cioni, L. Fezoui, and H. Steve, "A parallel time-domain Maxwell solver using upwind schemes and triangular meshes," IMPACT Comput. Sci. Eng., vol. 5, no. 3, pp. 215-247, 1993.
-
(1993)
IMPACT Comput. Sci. Eng.
, vol.5
, Issue.3
, pp. 215-247
-
-
Cioni, J.-P.1
Fezoui, L.2
Steve, H.3
-
17
-
-
33644980291
-
Treatment of arbitrary-shaped boundaries with the finite-volume time-domain (FVTD) method
-
Warsaw, Poland, Jun.
-
D. Baumann, C. Fumeaux, and R. Vahldieck, "Treatment of arbitrary-shaped boundaries with the finite-volume time-domain (FVTD) method," in 17th Int. Electromagn. Compat. Symp./Exhibition, Warsaw, Poland, Jun. 2004, pp. 445-450.
-
(2004)
17th Int. Electromagn. Compat. Symp./Exhibition
, pp. 445-450
-
-
Baumann, D.1
Fumeaux, C.2
Vahldieck, R.3
|