-
1
-
-
0033363402
-
Transport theory for acoustic waves with reflection and transmission at interfaces
-
[1]
-
[1] G. Bal, J. B. Keller, G. Papanicolaou and L. Ryzhik, Transport theory for acoustic waves with reflection and transmission at interfaces, Wave Motion 30, 303-327, 1999.
-
(1999)
Wave Motion
, vol.30
, pp. 303-327
-
-
Bal, G.1
Keller, J. B.2
Papanicolaou, G.3
Ryzhik, L.4
-
2
-
-
0032092187
-
One-dimensional transport equations with discontinuous coeffi-cients
-
[2]
-
[2] F. Bouchut and F. James, One-dimensional transport equations with discontinuous coeffi-cients, Nonlinear Analysis, Theory, Methods and Applications 32, 891-933, 1998.
-
(1998)
Nonlinear Analysis, Theory, Methods and Applications
, vol.32
, pp. 891-933
-
-
Bouchut, F.1
James, F.2
-
3
-
-
3242697504
-
Computational high-frequency wave propagation usingthe level set method, with applications to the semi-classical limit of Schrodinger equations
-
[3]
-
[3] L. T. Cheng, H. L. Liu and S. Osher, Computational high-frequency wave propagation usingthe level set method, with applications to the semi-classical limit of Schrodinger equations, Comm. Math. Sci. 1, 593-621, 2003.
-
(2003)
Comm. Math. Sci
, vol.1
, pp. 593-621
-
-
Cheng, L. T.1
Liu, H. L.2
Osher, S.3
-
4
-
-
0000563828
-
On some analogy between different approaches to firstorder PDEs with non-smooth coefficients
-
[4]
-
[4] I. Capuzzo Dolcetta and B. Perthame, On some analogy between different approaches to firstorder PDEs with non-smooth coefficients, Adv. Math. Sci. Appl. 6, 689-703, 1996.
-
(1996)
Adv. Math. Sci. Appl
, vol.6
, pp. 689-703
-
-
Capuzzo Dolcetta, I.1
Perthame, B.2
-
5
-
-
18344388470
-
Discretization of dirac delta functions in level set methods
-
[5]
-
[5] B. Engquist, A. K. Tornberg and R. Tsai, Discretization of dirac delta functions in level set methods, J. Comp. Phys. 207, 28-51, 2005.
-
(2005)
J. Comp. Phys
, vol.207
, pp. 28-51
-
-
Engquist, B.1
Tornberg, A. K.2
Tsai, R.3
-
6
-
-
13844269242
-
Multiphase semiclassical approximation of an electron in a one-dimensional crys-talline lattice II. Impurities, confinement and Bloch oscillations
-
[6]
-
[6] L. Gosse, Multiphase semiclassical approximation of an electron in a one-dimensional crys-talline lattice II. Impurities, confinement and Bloch oscillations, J. Comp. Phys. 201, 344-375, 2004.
-
(2004)
J. Comp. Phys
, vol.201
, pp. 344-375
-
-
Gosse, L.1
-
7
-
-
0034401759
-
Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients
-
[7]
-
[7] L. Gosse and F. James, Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients, Math. Comp. 69, 987-1015, 2000.
-
(2000)
Math. Comp
, vol.69
, pp. 987-1015
-
-
Gosse, L.1
James, F.2
-
8
-
-
0442275913
-
On two moment systems for computing multiphase semiclassical limits of the schrodinger equation
-
[8]
-
[8] L. Gosse, S. Jin and X. T. Li, On two moment systems for computing multiphase semiclassical limits of the schrodinger equation, Math. Model Methods Appl. Sci. 13, 1689-1723, 2003.
-
(2003)
Math. Model Methods Appl. Sci
, vol.13
, pp. 1689-1723
-
-
Gosse, L.1
Jin, S.2
Li, X. T.3
-
9
-
-
0039658608
-
Homogenization limits and Wigner transforms
-
[9]
-
[9] P. Gérard, P. A. Markowich, N. J. Mauser and F. Poupaud, Homogenization limits and Wigner transforms, Comm. Pure Appl. Math. 50, 321-377, 1997.
-
(1997)
Comm. Pure Appl. Math
, vol.50
, pp. 321-377
-
-
Gérard, P.1
Markowich, P. A.2
Mauser, N. J.3
Poupaud, F.4
-
10
-
-
0442331531
-
Multi-phase computations of the semiclassical limit of the Schrodinger equation and related problems: Whitham vs. Wigner
-
[10]
-
[10] S. Jin and X. T. Li, Multi-phase computations of the semiclassical limit of the Schrodinger equation and related problems: Whitham vs. Wigner, Physica D 182, 46-85, 2003.
-
(2003)
Physica D
, vol.182
, pp. 46-85
-
-
Jin, S.1
Li, X. T.2
-
11
-
-
16844373042
-
Computing multivalued physical observables for the semiclassical limit of the Schrodinger equation
-
[11]
-
[11] S. Jin, H. L. Liu, S. Osher and R. Tsai, Computing multivalued physical observables for the semiclassical limit of the Schrodinger equation, J. Comp. Phys. 205, 222-241, 2005.
-
(2005)
J. Comp. Phys
, vol.205
, pp. 222-241
-
-
Jin, S.1
Liu, H. L.2
Osher, S.3
Tsai, R.4
-
12
-
-
3242673880
-
A level set method for the computation of multivalued solutions to quasi-linear hyperbolic PDE's and Hamilton-Jacobi equations
-
[12]
-
[12] S. Jin and S. Osher, A level set method for the computation of multivalued solutions to quasi-linear hyperbolic PDE's and Hamilton-Jacobi equations, Comm. Math. Sci. 1, 575-591, 2003.
-
(2003)
Comm. Math. Sci
, vol.1
, pp. 575-591
-
-
Jin, S.1
Osher, S.2
-
16
-
-
0040452394
-
On stable methods for solving non-linear first order partial differential equations in the class of discontinuous functions
-
[16] (J. J. H. Miller, ad), Academic Press, London
-
[16] N. N. Kuznetsov, On stable methods for solving non-linear first order partial differential equations in the class of discontinuous functions, Topics in Numerical Analysis III (Proc. Roy. Irish Acad. Conf.)(J. J. H. Miller, ad.), Academic Press, London, 183-197, 1977.
-
(1977)
Topics in Numerical Analysis III (Proc. Roy. Irish Acad. Conf.)
, pp. 183-197
-
-
Kuznetsov, N. N.1
-
19
-
-
0034148496
-
Refraction of high frequency waves density by sharp interfaces and semiclassical measures at the boundary
-
[19]
-
[19] L. Miller, Refraction of high frequency waves density by sharp interfaces and semiclassical measures at the boundary, J. Math. Pures Appl. IX 79, 227-269, 2000.
-
(2000)
J. Math. Pures Appl. IX
, vol.79
, pp. 227-269
-
-
Miller, L.1
-
20
-
-
0030530384
-
On positivity preserving finite volume schemes for Euler equa-tions
-
[20]
-
[20] B. Perthame and C. W. Shu, On positivity preserving finite volume schemes for Euler equa-tions, Numer. Math. 73, 119-130, 1996.
-
(1996)
Numer. Math
, vol.73
, pp. 119-130
-
-
Perthame, B.1
Shu, C. W.2
-
21
-
-
0012588539
-
A kinetic scheme for the Saint-Venant system with a source term
-
[21]
-
[21] B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term, CALCOLO 38, 201-231, 2001.
-
(2001)
CALCOLO
, vol.38
, pp. 201-231
-
-
Perthame, B.1
Simeoni, C.2
-
22
-
-
0035882842
-
Linear transport equations with discontinuous coefficients
-
[22]
-
[22] G. Petrova and B. Popov, Linear transport equations with discontinuous coefficients, J. Math.Anal. Appl. 260, 307-324, 2001.
-
(2001)
J. Math.Anal. Appl
, vol.260
, pp. 307-324
-
-
Petrova, G.1
Popov, B.2
-
23
-
-
0000389658
-
Measure solutions to the linear multidimensional transport equa-tion with non-smooth coefficients
-
[23]
-
[23] F. Poupaud and M. Rascle, Measure solutions to the linear multidimensional transport equa-tion with non-smooth coefficients, Comm. PDEs 22, 337-358, 1997.
-
(1997)
Comm. PDEs
, vol.22
, pp. 337-358
-
-
Poupaud, F.1
Rascle, M.2
-
24
-
-
0030388835
-
Transport equations for elastic and other waves in random media
-
[24]
-
[24] L. Ryzhik, G. Papanicolaou and J. Keller, Transport equations for elastic and other waves in random media, Wave Motion 24, 327-370, 1996.
-
(1996)
Wave Motion
, vol.24
, pp. 327-370
-
-
Ryzhik, L.1
Papanicolaou, G.2
Keller, J.3
-
25
-
-
0001234945
-
Transport equations for waves in a half space
-
[25]
-
[25] L. Ryzhik, G. Papanicolaou and J. Keller, Transport equations for waves in a half space,Comm. PDE's 22, 1869-1910, 1997.
-
(1997)
Comm. PDE's
, vol.22
, pp. 1869-1910
-
-
Ryzhik, L.1
Papanicolaou, G.2
Keller, J.3
-
26
-
-
45449125925
-
Efficient implementation of essentially non-oscillatory shock cap-turing scheme
-
[26]
-
[26] C. W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock cap-turing scheme, J. Comput. Phys. 77, 439-471, 1988.
-
(1988)
J. Comput. Phys
, vol.77
, pp. 439-471
-
-
Shu, C. W.1
Osher, S.2
-
27
-
-
84887251437
-
Multivalued geometrical optics: Wigner vs. WKB
-
[27]
-
[27] C. Sparber, P. Markowich and N. Mauser, Multivalued geometrical optics: Wigner vs. WKB,Asymptotic Analysis 33, 153-187, 2003.
-
(2003)
Asymptotic Analysis
, vol.33
, pp. 153-187
-
-
Sparber, C.1
Markowich, P.2
Mauser, N.3
-
28
-
-
0021513424
-
High-resolution schemes using flux limiters for hyperbolic conservation-laws
-
[28]
-
[28] P. K. Sweby, High-resolution schemes using flux limiters for hyperbolic conservation-laws,SIAM J. Num. Anal. 21, 995-1011, 1984.
-
(1984)
SIAM J. Num. Anal
, vol.21
, pp. 995-1011
-
-
Sweby, P. K.1
-
29
-
-
84968519569
-
The sharpness of Kuznetsov's O/∆X) L1-error estimate for mono tone difference schemes
-
[29]
-
[29] T. Tang and Z. H. Teng, The sharpness of Kuznetsov's O/∆X) L1-error estimate for mono tone difference schemes, Math. Comp. 64, 581-589, 1995.
-
(1995)
Math. Comp
, vol.64
, pp. 581-589
-
-
Tang, T.1
Teng, Z. H.2
-
30
-
-
0041733947
-
Multi-dimensional quadrature of singular and discontinuous functions
-
[30]
-
[30] A. K. Tornberg, Multi-dimensional quadrature of singular and discontinuous functions, BIT 42, 644-669, 2002.
-
(2002)
BIT
, vol.42
, pp. 644-669
-
-
Tornberg, A. K.1
|