-
4
-
-
0001255625
-
-
Gould, R. F., Ed.; American Chemical Society: Washington, DC
-
Johnson, R. E., Jr.; Dettre, R. H. In Contact Angle, Wettability, and Adhesion; Gould, R. F., Ed.; American Chemical Society: Washington, DC, 1964; Vol. 43, pp 112-135.
-
(1964)
Contact Angle, Wettability, and Adhesion
, vol.43
, pp. 112-135
-
-
Johnson Jr., R.E.1
Dettre, R.H.2
-
5
-
-
0001558665
-
-
Kunugi, Y.; Nonaku, T.; Chong, Y.-B.; Watanabe, N. J. Electroanal. Chem. 1993, 353, 209.
-
(1993)
J. Electroanal. Chem.
, vol.353
, pp. 209
-
-
Kunugi, Y.1
Nonaku, T.2
Chong, Y.-B.3
Watanabe, N.4
-
6
-
-
0024663442
-
-
Morra, M.; Occhiello, E.; Garbassi, F. Langmuir 1989, 5, 872.
-
(1989)
Langmuir
, vol.5
, pp. 872
-
-
Morra, M.1
Occhiello, E.2
Garbassi, F.3
-
9
-
-
0033546488
-
-
Bico, J.; Marzolin, C.; Quéré, D. Europhys. Lett. 1999, 47, 220.
-
(1999)
Europhys. Lett.
, vol.47
, pp. 220
-
-
Bico, J.1
Marzolin, C.2
Quéré, D.3
-
10
-
-
0032634742
-
-
Chen, W.; et al. Langmuir 1999, 15, 3395.
-
(1999)
Langmuir
, vol.15
, pp. 3395
-
-
Chen, W.1
-
11
-
-
0037470416
-
-
Erbil, H. Y.; Demirel, A. L.; Avci, Y.; Mert, O. Science 299, 1377 2003.
-
(2003)
Science
, vol.299
, pp. 1377
-
-
Erbil, H.Y.1
Demirel, A.L.2
Avci, Y.3
Mert, O.4
-
13
-
-
0037937411
-
-
He, B.; Patankar, N. A.; Lee, J. Langmuir 2003, 19, 4999.
-
(2003)
Langmuir
, vol.19
, pp. 4999
-
-
He, B.1
Patankar, N.A.2
Lee, J.3
-
15
-
-
2542463855
-
-
Krupenkin, T. N.; Taylor, J. A.; Schneider, T. M.; Yang, S. Langmuir 2004, 20, 3824.
-
(2004)
Langmuir
, vol.20
, pp. 3824
-
-
Krupenkin, T.N.1
Taylor, J.A.2
Schneider, T.M.3
Yang, S.4
-
16
-
-
4243097369
-
-
Onda, T.; Shibuichi, S.; Satoh, N.; Tsujii, K. Langmuir 1996, 12, 2125.
-
(1996)
Langmuir
, vol.12
, pp. 2125
-
-
Onda, T.1
Shibuichi, S.2
Satoh, N.3
Tsujii, K.4
-
18
-
-
0031125332
-
-
Tadanaga, K.; Katata, N.; Minami, T. J. Am. Ceram. Soc. 1997, 80, 1040.
-
(1997)
J. Am. Ceram. Soc.
, vol.80
, pp. 1040
-
-
Tadanaga, K.1
Katata, N.2
Minami, T.3
-
19
-
-
33644513662
-
-
note
-
Super repellency also is referred to as super or ultra lyophobicity. If the liquid is water, then it is termed super hydrophobicity.
-
-
-
-
25
-
-
33644556083
-
-
note
-
Teflon is a registered trademark of DuPont.
-
-
-
-
27
-
-
3242770575
-
-
Mittal, K. L., Ed.; VSP: Boston
-
Fabretto, M.; Sedev, R.; Ralston, J. In Contact Angle, Wettability and Adhesion; Mittal, K. L., Ed.; VSP: Boston, 2003; Vol. 3, pp 161-173.
-
(2003)
Contact Angle, Wettability and Adhesion
, vol.3
, pp. 161-173
-
-
Fabretto, M.1
Sedev, R.2
Ralston, J.3
-
28
-
-
0032649191
-
-
Nishino, T.; Meguro, M.; Nakamae, K.; Matsushita, M.; Ueda, Y. Langmuir 1999, 15, 4321.
-
(1999)
Langmuir
, vol.15
, pp. 4321
-
-
Nishino, T.1
Meguro, M.2
Nakamae, K.3
Matsushita, M.4
Ueda, Y.5
-
29
-
-
33644516547
-
-
note
-
The most widely known form of Teflon is poly(tetrafluoroethylene) (PTFE), which is comprised solely of fluoromethylene groups. If smooth, PTFE has a contact angle of approximately 110°. DuPont manufactures a number of PTFE copolymers that are sold under the Teflon trademark, such as fluorinated ethylene propylene (FEP), perfluoroalkoxy (PFA), and an amorphous 2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole (PDD)/tetrafluoroethylene (TFE) copolymer (Teflon AF). These copolymers all contain comonomers with side chains that are fluoromethyl terminated. Among these, the PDD/TFE copolymer contains the highest number of fluoromethyl groups and consequently can show contact angles as high as 130°. Other fluorocarbon compounds, such as fluorowaxes and fluorosurfactants, also can be used to create smooth layers that show water contact angles in excess of 120°.
-
-
-
-
30
-
-
33644507029
-
-
note
-
a.
-
-
-
-
32
-
-
33644520204
-
-
note
-
Eq 4 is for a flat horizontal sheet of liquid. The suspension pressures required to repel impinging drops will be somewhat larger.
-
-
-
-
33
-
-
33644533456
-
-
note
-
Even though drop curvature increases the downward pressure above and beyond that associated with the height of the liquid drop, a suspension pressure that successfully repels a column of liquid will easily repel small residual drops.
-
-
-
-
39
-
-
33644546339
-
-
note
-
The early papers on drop retention cited here assume a constant advancing contact angle at the front of the drop and a constant receding value at the rear. Although this may be approximately true for elongated drops, it is not the case for drops with circular contact lines. If drops are not stretched much, which is the case for super repellent surfaces, then their contact line remains circular, and the contact angle varies continuously from front to back. The pre-factor in eq 8 arises from integrating the dot product of the liquid surface tension and the cosine of the contact angle from the advancing value at the front of the drop to the receding value at the rear.
-
-
-
-
41
-
-
0023978140
-
-
If very small drops with diameters equal to or less than asperity spacing fall between asperities, these drops may behave differently. Small drops entering pores have been studied by Marmur, A. J. Colloid Interface Sci. 1988, 122, 209.
-
(1988)
J. Colloid Interface Sci.
, vol.122
, pp. 209
-
-
Marmur, A.1
-
43
-
-
0035249849
-
-
Fenelonov, V. B.; Kodenyov, G. G.; Kostrovsky, V. G. J. Phys. Chem. B 2001, 105, 1050.
-
(2001)
J. Phys. Chem. B
, vol.105
, pp. 1050
-
-
Fenelonov, V.B.1
Kodenyov, G.G.2
Kostrovsky, V.G.3
|