메뉴 건너뛰기




Volumn 33, Issue 4, 2006, Pages 807-823

Multilayer perceptron with functional inputs: An inverse regression approach

Author keywords

Classification; Dimension reduction; Functional data analysis; Multilayer perceptron; Prediction

Indexed keywords


EID: 32544447886     PISSN: 03036898     EISSN: 14679469     Source Type: Journal    
DOI: 10.1111/j.1467-9469.2006.00496.x     Document Type: Review
Times cited : (27)

References (31)
  • 1
    • 20544447297 scopus 로고    scopus 로고
    • Functional classification in Hilbert spaces
    • Biau, G., Bunea, F. & Wegkamp, M. (2005). Functional classification in Hilbert spaces. IEEE Trans. Inform. Theory 51, 2163-2172.
    • (2005) IEEE Trans. Inform. Theory , vol.51 , pp. 2163-2172
    • Biau, G.1    Bunea, F.2    Wegkamp, M.3
  • 3
    • 0000203752 scopus 로고
    • Optimal minimal neural interpretation of spectra
    • Borggaard, C. & Thodberg, H. (1992). Optimal minimal neural interpretation of spectra. Anal. Chem. 64, 545-551.
    • (1992) Anal. Chem. , vol.64 , pp. 545-551
    • Borggaard, C.1    Thodberg, H.2
  • 4
    • 0003144972 scopus 로고
    • Modelization non-parametric estimation and prediction for continuous time processes
    • (ed. Roussas, G.). Kluwer Academic Publishers, Dortrecht
    • Bosq, D. (1991). Modelization non-parametric estimation and prediction for continuous time processes. In Nonparametric functional estimation and related topics, Nato ASI Series C (ed. Roussas, G.), Vol. 335, 509-529. Kluwer Academic Publishers, Dortrecht.
    • (1991) Nonparametric Functional Estimation and Related Topics, Nato ASI Series C , vol.335 , pp. 509-529
    • Bosq, D.1
  • 6
    • 0029343809 scopus 로고
    • Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems
    • Chen, T. & Chen, H. (1995). Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems. IEEE Trans. Neural Netw. 6, 911-917.
    • (1995) IEEE Trans. Neural Netw. , vol.6 , pp. 911-917
    • Chen, T.1    Chen, H.2
  • 7
    • 84881499895 scopus 로고
    • Comment on sliced inverse regression for dimension reduction by K.C. Li
    • Cook, R. & Weisberg, S. (1991). Comment on sliced inverse regression for dimension reduction by K.C. Li. J. Amer. Statist. Assoc. 86, 328-332.
    • (1991) J. Amer. Statist. Assoc. , vol.86 , pp. 328-332
    • Cook, R.1    Weisberg, S.2
  • 8
    • 0347117533 scopus 로고    scopus 로고
    • Un modèle semi-paramétrique pour variable aléatoire hilbertienne
    • Dauxois, J., Ferré, L. & Yao, A. (2001). Un modèle semi-paramétrique pour variable aléatoire hilbertienne. C. R. Math. Acad Sci. Paris 327, 947-952.
    • (2001) C. R. Math. Acad Sci. Paris , vol.327 , pp. 947-952
    • Dauxois, J.1    Ferré, L.2    Yao, A.3
  • 9
    • 0141989607 scopus 로고    scopus 로고
    • Curves discrimination: A non parametric approach
    • Ferraty, F. & Vieu, P. (2003). Curves discrimination: a non parametric approach. Comput. Statist. Data Anal. 44, 161-173.
    • (2003) Comput. Statist. Data Anal. , vol.44 , pp. 161-173
    • Ferraty, F.1    Vieu, P.2
  • 10
    • 32544456577 scopus 로고    scopus 로고
    • Discrimination de courbes par régression inverse fonctionnelle
    • Ferré, L. & Villa, N. (2005). Discrimination de courbes par régression inverse fonctionnelle. Rev. Statist. Appliquée LIII, 39-57.
    • (2005) Rev. Statist. Appliquée , vol.53 , pp. 39-57
    • Ferré, L.1    Villa, N.2
  • 11
    • 0345491393 scopus 로고    scopus 로고
    • Functional sliced inverse regression analysis
    • Ferré, L. & Yao, A. (2003). Functional sliced inverse regression analysis. Statistics 37, 475-488.
    • (2003) Statistics , vol.37 , pp. 475-488
    • Ferré, L.1    Yao, A.2
  • 12
    • 27144503064 scopus 로고    scopus 로고
    • Smoothed functional inverse regression
    • Ferré, L. & Yao, A. (2005). Smoothed functional inverse regression. Statist. Sinica 15, 665-683.
    • (2005) Statist. Sinica , vol.15 , pp. 665-683
    • Ferré, L.1    Yao, A.2
  • 13
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • Friedman, J. (1989). Regularized discriminant analysis. J. Amer. Statist. Assoc. 84, 165-175.
    • (1989) J. Amer. Statist. Assoc. , vol.84 , pp. 165-175
    • Friedman, J.1
  • 15
    • 84948746712 scopus 로고
    • Flexible discriminant analysis by optimal scoring
    • Hastie, T., Tibshirani, R. & Buja, A. (1994). Flexible discriminant analysis by optimal scoring. J. Amer. Statist. Assoc. 89, 1255-1270.
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 1255-1270
    • Hastie, T.1    Tibshirani, R.2    Buja, A.3
  • 16
    • 0027812765 scopus 로고
    • Some new results on neural network approximation
    • Hornik, K. (1993). Some new results on neural network approximation. Neural Netw. 6, 1069-1072.
    • (1993) Neural Netw. , vol.6 , pp. 1069-1072
    • Hornik, K.1
  • 17
    • 0000906634 scopus 로고
    • An asymptotic theory for sliced inverse regression
    • Hsing, T. & Carroll, R. (1992). An asymptotic theory for sliced inverse regression. Ann. Statist. 20, 1040-1061.
    • (1992) Ann. Statist. , vol.20 , pp. 1040-1061
    • Hsing, T.1    Carroll, R.2
  • 18
    • 0043245795 scopus 로고    scopus 로고
    • Clustering for sparsely sampled functional data
    • James, G. & Sugar, C. (2003). Clustering for sparsely sampled functional data. J. Amer. Statist. Assoc. 98, 397-408.
    • (2003) J. Amer. Statist. Assoc. , vol.98 , pp. 397-408
    • James, G.1    Sugar, C.2
  • 20
    • 84945116550 scopus 로고
    • Sliced inverse regression for dimension reduction
    • Li, K. (1991). Sliced inverse regression for dimension reduction. J. Amer. Statist. Assoc. 86, 316-342.
    • (1991) J. Amer. Statist. Assoc. , vol.86 , pp. 316-342
    • Li, K.1
  • 21
    • 84950441056 scopus 로고
    • On principal hessian directions for data visualisation and dimension reduction: Another application of Stein's lemma
    • Li, K. (1992). On principal hessian directions for data visualisation and dimension reduction: another application of Stein's lemma. Ann. Statist. 87, 1025-1039.
    • (1992) Ann. Statist. , vol.87 , pp. 1025-1039
    • Li, K.1
  • 23
    • 11844253306 scopus 로고    scopus 로고
    • Functional multi-layer perception: A non-linear tool for functional data analysis
    • Rossi, F. & Conan-Guez, B. (2005). Functional multi-layer perception: a non-linear tool for functional data analysis. Neural Netw. 18, 45-60.
    • (2005) Neural Netw. , vol.18 , pp. 45-60
    • Rossi, F.1    Conan-Guez, B.2
  • 24
    • 15844393601 scopus 로고    scopus 로고
    • Clustering functional data with the som algorithm
    • (ed. M. Verleysen). d-side pub., Bruges, Belgium
    • Rossi, F., Conan-Guez, B. & El Golli, A. (2004). Clustering functional data with the som algorithm. In ESANN'2004 Proceedings (ed. M. Verleysen), 305-312. d-side pub., Bruges, Belgium.
    • (2004) ESANN'2004 Proceedings , pp. 305-312
    • Rossi, F.1    Conan-Guez, B.2    El Golli, A.3
  • 25
    • 0030393455 scopus 로고    scopus 로고
    • Network approximation of input-output maps and functional
    • Sandberg, I. & Xu, L. (1996). Network approximation of input-output maps and functional. Circuits Syst. Signal Process 15, 711-725.
    • (1996) Circuits Syst. Signal Process , vol.15 , pp. 711-725
    • Sandberg, I.1    Xu, L.2
  • 26
    • 0032961240 scopus 로고    scopus 로고
    • Neural network approximation of continuous functionals and continuous functions on compactifications
    • Stinchcombe, M. (1999). Neural network approximation of continuous functionals and continuous functions on compactifications. Neural Netw. 12, 467-477.
    • (1999) Neural Netw. , vol.12 , pp. 467-477
    • Stinchcombe, M.1
  • 27
    • 0029754435 scopus 로고    scopus 로고
    • A review of bayesian neural network with an application to near infrared spectroscopy
    • Thodberg, H. (1996). A review of bayesian neural network with an application to near infrared spectroscopy. IEEE Trans. Neural Netw. 7, 56-72.
    • (1996) IEEE Trans. Neural Netw. , vol.7 , pp. 56-72
    • Thodberg, H.1
  • 28
    • 0000243355 scopus 로고
    • Learning in artificial neural network: A statistical perspective
    • White, H. (1989). Learning in artificial neural network: a statistical perspective. Neural Comput. 1, 425-464.
    • (1989) Neural Comput. , vol.1 , pp. 425-464
    • White, H.1
  • 29
    • 0036428498 scopus 로고    scopus 로고
    • An adaptative estimation of dimension reduction space
    • Xia, Y., Tong, H., Li, W. & Zhu, L. (2002). An adaptative estimation of dimension reduction space. J. R. Statist. Soc. Ser: B 64, 363-410.
    • (2002) J. R. Statist. Soc. Ser: B , vol.64 , pp. 363-410
    • Xia, Y.1    Tong, H.2    Li, W.3    Zhu, L.4
  • 31
    • 0038153750 scopus 로고    scopus 로고
    • Asymptotics for kernel estimate of sliced inverse regression
    • Zhu, L. & Fang, K. (1996). Asymptotics for kernel estimate of sliced inverse regression. Ann. Statist. 24, 1053-1068.
    • (1996) Ann. Statist. , vol.24 , pp. 1053-1068
    • Zhu, L.1    Fang, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.