메뉴 건너뛰기




Volumn 18, Issue 1, 2005, Pages 45-60

Functional multi-layer perceptron: A non-linear tool for functional data analysis

Author keywords

Curves discrimination; Functional data analysis; Learning consistency; Multi layer perceptron; Non linear functional model; Spectrometric data; Supervised learning; Universal approximation

Indexed keywords

FUNCTIONAL INPUTS; MULTI-LAYER PERCEPTRONS (MLP); NATURAL EXTENSION; OPTIMAL PARAMETERS;

EID: 11844253306     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2004.07.001     Document Type: Article
Times cited : (110)

References (31)
  • 2
    • 0001761552 scopus 로고
    • Consistency in non-linear econometric models: A generic uniform law of large numbers
    • D.W.K. Andrews Consistency in non-linear econometric models: A generic uniform law of large numbers Econometrica 55 6 1987 1465 1471 November
    • (1987) Econometrica , vol.55 , Issue.6 , pp. 1465-1471
    • Andrews, D.W.K.1
  • 9
    • 0041459525 scopus 로고    scopus 로고
    • Spline estimators for the functional linear model
    • H. Cardot, F. Ferraty, and P. Sarda Spline estimators for the functional linear model Statistica Sinica 13 2003 571 591
    • (2003) Statistica Sinica , vol.13 , pp. 571-591
    • Cardot, H.1    Ferraty, F.2    Sarda, P.3
  • 10
    • 0031594029 scopus 로고    scopus 로고
    • A unified approach for neural network-like approximation of non-linear functional
    • T. Chen A unified approach for neural network-like approximation of non-linear functional Neural Networks 11 1998 981 983
    • (1998) Neural Networks , vol.11 , pp. 981-983
    • Chen, T.1
  • 11
    • 0029343809 scopus 로고
    • Universal approximation to non-linear operators by neural networks with arbitrary activation functions and its application to dynamical systems
    • T. Chen, and H. Chen Universal approximation to non-linear operators by neural networks with arbitrary activation functions and its application to dynamical systems IEEE Transactions on Neural Networks 6 4 1995 911 917 July
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.4 , pp. 911-917
    • Chen, T.1    Chen, H.2
  • 13
    • 0036988938 scopus 로고    scopus 로고
    • Functional non-parametric model for time series: A fractal approach for dimension reduction
    • F. Ferraty, A. Goia, and P. Vieu Functional non-parametric model for time series: A fractal approach for dimension reduction TEST 11 2 2002 317 344 December
    • (2002) TEST , vol.11 , Issue.2 , pp. 317-344
    • Ferraty, F.1    Goia, A.2    Vieu, P.3
  • 14
    • 0036448834 scopus 로고    scopus 로고
    • The functional non-parametric model and application to spectrometric data
    • F. Ferraty, and P. Vieu The functional non-parametric model and application to spectrometric data Computational Statistics 17 4 2002
    • (2002) Computational Statistics , vol.17 , Issue.4
    • Ferraty, F.1    Vieu, P.2
  • 15
    • 0141989607 scopus 로고    scopus 로고
    • Curves discriminations: A non-parametric functional approach
    • F. Ferraty, and P. Vieu Curves discriminations: A non-parametric functional approach Computational Statistics and Data Analysis 44 1/2 2003 161 173
    • (2003) Computational Statistics and Data Analysis , vol.44 , Issue.12 , pp. 161-173
    • Ferraty, F.1    Vieu, P.2
  • 16
    • 0345491393 scopus 로고    scopus 로고
    • Functional sliced inverse regression analysis
    • L. Ferré, and A.-F. Yao Functional sliced inverse regression analysis Statistics 37 6 2003 475 488 November/December
    • (2003) Statistics , vol.37 , Issue.6 , pp. 475-488
    • Ferré, L.1    Yao, A.-F.2
  • 17
    • 0000467952 scopus 로고
    • A discussion of 'a statistical view of some chemometrics regression tools' by I.E. Frank and J.H. Friedman
    • T. Hastie, and C. Mallows A discussion of 'a statistical view of some chemometrics regression tools' by I.E. Frank and J.H. Friedman Technometrics 35 1993 140 143
    • (1993) Technometrics , vol.35 , pp. 140-143
    • Hastie, T.1    Mallows, C.2
  • 19
    • 0025751820 scopus 로고
    • Approximation capabilities of multi-layer feedforward networks
    • K. Hornik Approximation capabilities of multi-layer feedforward networks Neural Networks 4 2 1991 251 257
    • (1991) Neural Networks , vol.4 , Issue.2 , pp. 251-257
    • Hornik, K.1
  • 20
    • 0027812765 scopus 로고
    • Some new results on neural network approximation
    • K. Hornik Some new results on neural network approximation Neural Networks 6 8 1993 1069 1072
    • (1993) Neural Networks , vol.6 , Issue.8 , pp. 1069-1072
    • Hornik, K.1
  • 21
  • 23
    • 0027262895 scopus 로고
    • Multi-layer feedforward networks with a non-polynomial activation function can approximate any function
    • M. Leshno, V.Y. Lin, A. Pinkus, and S. Schocken Multi-layer feedforward networks with a non-polynomial activation function can approximate any function Neural Networks 6 6 1993 861 867
    • (1993) Neural Networks , vol.6 , Issue.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Y.2    Pinkus, A.3    Schocken, S.4
  • 29
    • 0030393455 scopus 로고    scopus 로고
    • Network approximation of input-output maps and functionals
    • I.W. Sandberg, and L. Xu Network approximation of input-output maps and functionals Circuits Systems Signal Processing 15 6 1996 711 725
    • (1996) Circuits Systems Signal Processing , vol.15 , Issue.6 , pp. 711-725
    • Sandberg, I.W.1    Xu, L.2
  • 30
    • 0032961240 scopus 로고    scopus 로고
    • Neural network approximation of continuous functionals and continuous functions on compactifications
    • M.B. Stinchcombe Neural network approximation of continuous functionals and continuous functions on compactifications Neural Networks 12 3 1999 467 477
    • (1999) Neural Networks , vol.12 , Issue.3 , pp. 467-477
    • Stinchcombe, M.B.1
  • 31
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: A statistical perspective
    • H. White Learning in artificial neural networks: A statistical perspective Neural Computation 1 4 1989 425 464
    • (1989) Neural Computation , vol.1 , Issue.4 , pp. 425-464
    • White, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.