메뉴 건너뛰기




Volumn 3176, Issue , 2004, Pages 1-20

An introduction to pattern classification

Author keywords

[No Author keywords available]

Indexed keywords


EID: 32444433771     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-28650-9_1     Document Type: Article
Times cited : (6)

References (56)
  • 3
    • 0003543198 scopus 로고
    • . PhD thesis, Cornell University, Applied mathematics center, Ithaka, NY
    • . J.C. Bezdek. Fuzzy mathematics in pattern classification. PhD thesis, Cornell University, Applied mathematics center, Ithaka, NY, 1973.
    • (1973) Fuzzy Mathematics in Pattern Classification
    • Bezdek, J.C.1
  • 4
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A.L. Blum and P. Langley. Selection of relevant features and examples in machine learning. Artificial Intelligence, 97:245-271, 1997.
    • (1997) Artificial Intelligence , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 7
    • 84898957872 scopus 로고    scopus 로고
    • Improving the accuracy and speed of support vector machines
    • M.C. Mozer, M.I. Jordan, and T. Petsche, editors, Cambridge, MA, USA, . The MIT Press.
    • C.J.C. Burges and B. Schölkopf. Improving the accuracy and speed of support vector machines. In M.C. Mozer, M.I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems, volume 9, page 375, Cambridge, MA, USA, 1997. The MIT Press.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 375
    • Burges, C.J.C.1    Schölkopf, B.2
  • 8
    • 0032187518 scopus 로고    scopus 로고
    • Blind signal separation: Statistical principles
    • J-F Cardoso. Blind signal separation: Statistical principles. Proceedings of the IEEE, 9(10):2009-2025, 1998.
    • (1998) Proceedings of the IEEE , vol.9 , Issue.10 , pp. 2009-2025
    • Cardoso, J.-F.1
  • 10
    • 34249753618 scopus 로고
    • Support upport vector networks
    • C. Cortes and V. Vapnik. Support vector networks. Machine learning, 20:273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 84898954907 scopus 로고    scopus 로고
    • Spectral kernel methods for clustering
    • T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Cambridge, MA, USA, . The MIT Press.
    • N. Cristianini, J. Shawe-Taylor, and J. Kandola. Spectral kernel methods for clustering. In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems, volume 14, pages 649-655, Cambridge, MA, USA, 2002. The MIT Press.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 649-655
    • Cristianini, N.1    Shawe-Taylor, J.2    Kandola, J.3
  • 13
    • 0000406788 scopus 로고
    • Solving multi-class learning problems via errorcorrecting output codes
    • T.G. Dietrich and G. Bakiri. Solving multi-class learning problems via errorcorrecting output codes. Journal of artificial intelligence research, 2:263-286, 1995.
    • (1995) Journal of Artificial Intelligence Research , vol.2 , pp. 263-286
    • Dietrich, T.G.1    Bakiri, G.2
  • 14
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T.G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7):1895-1923, 1998.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 16
    • 0036192078 scopus 로고    scopus 로고
    • A note on core research issues for statistical pattern recognition
    • R.P.W. Duin, F. Roli, and D. de Ridder. A note on core research issues for statistical pattern recognition. Pattern recognition letters, 23:493-499, 2002.
    • (2002) Pattern Recognition Letters , vol.23 , pp. 493-499
    • Duin, R.P.W.1    Roli, F.2    De Ridder, D.3
  • 18
    • 0003000735 scopus 로고
    • Faster-learning variations on back-propagation: An empirical study
    • T.J. Sejnowski, G.E. Hinton, and D.S. Touretzky, editors, School, San Mateo, CA, USA, Morgan Kaufmann.
    • S.E. Fahlman. Faster-learning variations on back-propagation: An empirical study. In T.J. Sejnowski, G.E. Hinton, and D.S. Touretzky, editors, Connectionist Models Summer School, San Mateo, CA, USA, 1988. Morgan Kaufmann.
    • (1988) Connectionist Models Summer
    • Fahlman, S.E.1
  • 19
    • 0031211090 scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • Y. Freund and R.E. Schapire. A decision-theoretic generalization of online learning and an application to boosting. Journal of Computer and System Sciences, 55:119-139, 1995.
    • (1995) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 20
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine learning, 46(l-3):389-422, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 21
    • 84898942883 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • M.I. Jordan, M.J. Kearns, and S.A. Solla, editors, Cambridge, MA, USA, . The MIT Press.
    • T.J. Hastie and R.J. Tibshirani. Classification by pairwise coupling. In M.I. Jordan, M.J. Kearns, and S.A. Solla, editors, Advances in Neural Information Processing Systems, volume 10, Cambridge, MA, USA, 1998. The MIT Press.
    • (1998) Advances in Neural Information Processing Systems , vol.10
    • Hastie, T.J.1    Tibshirani, R.J.2
  • 24
    • 0020068152 scopus 로고
    • Self-organization and associative memory
    • T. Kohonen. Self-organization and associative memory. Biological Cybernetics, 43(l):59-69, 1982.
    • (1982) Biological Cybernetics , vol.43 , Issue.1 , pp. 59-69
    • Kohonen, T.1
  • 26
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 27
    • 0002312061 scopus 로고
    • Feature selection and feature extraction for text categorization
    • , San Francisco, USA, . Morgan Kaufmann.
    • D.D. Lewis. Feature selection and feature extraction for text categorization. In Proceedings of speech and natural language workshop, pages 212-217, San Francisco, USA, 1992. Morgan Kaufmann.
    • (1992) Proceedings of Speech and Natural Language Workshop , pp. 212-217
    • Lewis, D.D.1
  • 29
    • 0000372206 scopus 로고
    • Bayesian model comparison and backprop nets
    • J.E. Moody, S.J. Hanson, and R.P. Lippmann, editors, , San Mateo, CA, USA, . Morgan Kaufmann.
    • D.J. MacKay. Bayesian model comparison and backprop nets. In J.E. Moody, S.J. Hanson, and R.P. Lippmann, editors, Neural Networks for Signal Processing 4, pages 839-846, San Mateo, CA, USA, 1992. Morgan Kaufmann.
    • (1992) Neural Networks for Signal Processing , vol.4 , pp. 839-846
    • MacKay, D.J.1
  • 32
    • 0033337021 scopus 로고    scopus 로고
    • Fisher discriminant analysis with kernels
    • Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas, editors, . IEEE
    • S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. Fisher discriminant analysis with kernels. In Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas, editors, Neural Networks for Signal Processing IX, pages 41-48. IEEE, 1999.
    • (1999) Neural Networks for Signal Processing , vol.9 , pp. 41-48
    • Mika, S.1    Rätsch, G.2    Weston, J.3    Schölkopf, B.4    Müller, K.-R.5
  • 34
    • 0010142578 scopus 로고
    • One-class classifier networks for target recognition applications
    • Portland, OR, USA, International neural networks society.
    • M.R. Moya, M.W. Koch, and L.D. Hosteller. One-class classifier networks for target recognition applications. In Proceedings of the world congress on neural networks, Portland, OR, USA, 1993. International neural networks society.
    • (1993) Proceedings of the World Congress on Neural Networks
    • Moya, M.R.1    Koch, M.W.2    Hosteller, L.D.3
  • 36
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • M. Muller. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6:525-533, 1993.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Muller, M.1
  • 37
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, , Cambridge, MA, USA, . The MIT Press.
    • A.Y. Ng, M.I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems, volume 14, pages 849-856, Cambridge, MA, USA, 2002. The MIT Press.
    • (2002) Advances in Neural Information Processing Systems , vol.14 , pp. 849-856
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 39
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • E. Parzen. On estimation of a probability density function and mode. Annals of mathematical statistics, 33(3):1065-1076, 1962.
    • (1962) Annals of Mathematical Statistics , vol.33 , Issue.3 , pp. 1065-1076
    • Parzen, E.1
  • 40
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, , Cambridge, MA, USA, . MIT Press.
    • J. Platt. Fast training of support vector machines using sequential minimal optimization. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in kernel methods - Support vector learning, pages 185-208, Cambridge, MA, USA, 1999. MIT Press.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 42
    • 0001857179 scopus 로고
    • Learning efficient classification procedures and their application to chess end games
    • R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine learning: , San Francisco, CA, USA, . Morgan Kaufmann.
    • J.R. Quinlan. Learning efficient classification procedures and their application to chess end games. In R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, editors, Machine learning: An artificial intelligence approach, pages 463-482, San Francisco, CA, USA, 1983. Morgan Kaufmann.
    • (1983) An Artificial Intelligence Approach , pp. 463-482
    • Quinlan, J.R.1
  • 51
    • 0040403007 scopus 로고
    • Intelligent machinery
    • D.C. Ince, editor, Amsterdam, The Netherlands, . Elsevier Science Publishers.
    • A.M. Turing. Intelligent machinery. In D.C. Ince, editor, Collected works of A.M. Turing: Mechanical Intelligence, Amsterdam, The Netherlands, 1992. Elsevier Science Publishers.
    • (1992) Collected Works of A.M. Turing: Mechanical Intelligence
    • Turing, A.M.1
  • 55
    • 0002338687 scopus 로고
    • A genetic algorithm tutorial
    • D. Whitley. A genetic algorithm tutorial. Statistics and Computing, 4(2):65-85, 6 1994.
    • (1994) Statistics and Computing , vol.4 , Issue.2 , pp. 65-85
    • Whitley, D.1
  • 56
    • 0036762783 scopus 로고    scopus 로고
    • Feature selection for the classification of movements from single movement-related potentials
    • E. Yom-Tov and G.F. Inbar. Feature selection for the classification of movements from single movement-related potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10(3):170-177, 2001.
    • (2001) IEEE Transactions on Neural Systems and Rehabilitation Engineering , vol.10 , Issue.3 , pp. 170-177
    • Yom-Tov, E.1    Inbar, G.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.