메뉴 건너뛰기




Volumn 22, Issue 1, 2006, Pages 1-22

Regularized fixed-point iterations for nonlinear inverse problems

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATION THEORY; CONVERGENCE OF NUMERICAL METHODS; INVERSE PROBLEMS; MATHEMATICAL OPERATORS; NONLINEAR EQUATIONS; PROBLEM SOLVING;

EID: 31844449958     PISSN: 02665611     EISSN: 13616420     Source Type: Journal    
DOI: 10.1088/0266-5611/22/1/001     Document Type: Article
Times cited : (19)

References (39)
  • 1
    • 0038040992 scopus 로고
    • A computational experiment in the theory of surface wave of finite amplitude
    • Babenko K I, Petrovich V Y and Rakhmanov A I 1989 A computational experiment in the theory of surface wave of finite amplitude Sov. Math. Dokl. 38 327-31
    • (1989) Sov. Math. Dokl. , vol.38 , pp. 327-331
    • Babenko, K.I.1    Petrovich, V.Y.2    Rakhmanov, A.I.3
  • 2
    • 31844455310 scopus 로고
    • Demonstrative calculations in the theory of hydrodynamic stability
    • Babenko K I and Vasil'ev M M 1990 Demonstrative calculations in the theory of hydrodynamic stability Sel. Math. Sov. 9 171-97
    • (1990) Sel. Math. Sov. , vol.9 , pp. 171-197
    • Babenko, K.I.1    Vasil'ev, M.M.2
  • 3
    • 0013178793 scopus 로고
    • Remarks on choosing regularization parameter using the quasi-optimality and ratio criterion
    • Bakushinskii A B 1984 Remarks on choosing regularization parameter using the quasi-optimality and ratio criterion USSR Comp. Math. Math. Phys. 24 181-2
    • (1984) USSR Comp. Math. Math. Phys. , vol.24 , pp. 181-182
    • Bakushinskii, A.B.1
  • 4
    • 0000834834 scopus 로고
    • The problem of the convergence of the iteratively regularized Gauss-Newton method
    • Bakushinskij A B 1992 The problem of the convergence of the iteratively regularized Gauss-Newton method Comput. Math. Math. Phys. 32 1353-9
    • (1992) Comput. Math. Math. Phys. , vol.32 , pp. 1353-1359
    • Bakushinskij, A.B.1
  • 5
    • 28544447290 scopus 로고    scopus 로고
    • A Lepskij-type stopping rule for regularized Newton methods
    • Bauer F and Hohage T 2005 A Lepskij-type stopping rule for regularized Newton methods Inverse Problems 21 1975-91
    • (2005) Inverse Problems , vol.21 , pp. 1975-1991
    • Bauer, F.1    Hohage, T.2
  • 6
    • 0031532935 scopus 로고    scopus 로고
    • On convergence rates for the iteratively regularized Gauss-Newton method
    • Blaschke B, Neubauer A and Scherzer O 1997 On convergence rates for the iteratively regularized Gauss-Newton method IMA J. Numer. Anal. 17 421-36
    • (1997) IMA J. Numer. Anal. , vol.17 , pp. 421-436
    • Blaschke, B.1    Neubauer, A.2    Scherzer, O.3
  • 8
    • 0345875999 scopus 로고    scopus 로고
    • A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions
    • Deuflhard P, Engl H W and Scherzer O 1998 A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under affinely invariant conditions Inverse Problems 14 1081-106
    • (1998) Inverse Problems , vol.14 , pp. 1081-1106
    • Deuflhard, P.1    Engl, H.W.2    Scherzer, O.3
  • 10
    • 36149030945 scopus 로고
    • Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems
    • Engl H W, Kunisch K and Neubauer A 1989 Convergence rates for Tikhonov regularisation of nonlinear ill-posed problems Inverse Problems 5 523-40
    • (1989) Inverse Problems , vol.5 , pp. 523-540
    • Engl, H.W.1    Kunisch, K.2    Neubauer, A.3
  • 12
    • 18744408756 scopus 로고    scopus 로고
    • Convergence rates for Tikhonov regularization based on range inclusions
    • Hofmann B and Yamamoto M 2005 Convergence rates for Tikhonov regularization based on range inclusions Inverse Problems 21 805-20
    • (2005) Inverse Problems , vol.21 , pp. 805-820
    • Hofmann, B.1    Yamamoto, M.2
  • 13
    • 0000670255 scopus 로고    scopus 로고
    • Logarithmic convergence rates of the iteratively regularized Gauss-Newton method for an inverse potential and an inverse scattering problem
    • Hohage T 1997 Logarithmic convergence rates of the iteratively regularized Gauss-Newton method for an inverse potential and an inverse scattering problem Inverse Problems 13 1279-99
    • (1997) Inverse Problems , vol.13 , pp. 1279-1299
    • Hohage, T.1
  • 14
    • 0034187252 scopus 로고    scopus 로고
    • Regularization of exponentially ill-posed problems
    • Hohage T 2000 Regularization of exponentially ill-posed problems Numer. Funct. Anal. Optim. 21 439-64
    • (2000) Numer. Funct. Anal. Optim. , vol.21 , pp. 439-464
    • Hohage, T.1
  • 15
    • 0000130782 scopus 로고    scopus 로고
    • Some Newton-type methods for the regularization of nonlinear ill-posed problems
    • Kaltenbacher B 1997 Some Newton-type methods for the regularization of nonlinear ill-posed problems Inverse Problems 13 729-53
    • (1997) Inverse Problems , vol.13 , pp. 729-753
    • Kaltenbacher, B.1
  • 16
    • 0032164679 scopus 로고    scopus 로고
    • On Broyden's method for the regularization of nonlinear ill-posed problems
    • Kaltenbacher B 1998 On Broyden's method for the regularization of nonlinear ill-posed problems Numer. Funct. Anal. Optim. 19 807-33
    • (1998) Numer. Funct. Anal. Optim. , vol.19 , pp. 807-833
    • Kaltenbacher, B.1
  • 18
    • 0348207563 scopus 로고    scopus 로고
    • A derivative-free Landweber iteration for parameter identification in certain elliptic PDEs
    • Kügler P 2003 A derivative-free Landweber iteration for parameter identification in certain elliptic PDEs Inverse Problems 19 1407-26
    • (2003) Inverse Problems , vol.19 , pp. 1407-1426
    • Kügler, P.1
  • 20
    • 4243091943 scopus 로고
    • Tikhonov regularization for finitely and infinitely smoothing operators
    • Mair B A 1994 Tikhonov regularization for finitely and infinitely smoothing operators SIAM J. Math. Anal. 25 135-47
    • (1994) SIAM J. Math. Anal. , vol.25 , pp. 135-147
    • Mair, B.A.1
  • 21
    • 0346946904 scopus 로고    scopus 로고
    • Discretization strategy for linear ill-posed problems in variable Hilbert scales
    • Mathé P and Pereverzev S V 2003 Discretization strategy for linear ill-posed problems in variable Hilbert scales Inverse Problems 19 1263-77
    • (2003) Inverse Problems , vol.19 , pp. 1263-1277
    • Mathé, P.1    Pereverzev, S.V.2
  • 22
    • 0038339461 scopus 로고    scopus 로고
    • Geometry of linear ill-posed problems in variable Hilbert scales
    • Mathé P and Pereverzev S V 2003 Geometry of linear ill-posed problems in variable Hilbert scales Inverse Problems 19 789-803
    • (2003) Inverse Problems , vol.19 , pp. 789-803
    • Mathé, P.1    Pereverzev, S.V.2
  • 24
    • 0001425652 scopus 로고
    • Tikhonov regularisation for nonlinear ill-posed problems: Optimal convergence rates and finite-dimensional approximation
    • Neubauer A 1989 Tikhonov regularisation for nonlinear ill-posed problems: optimal convergence rates and finite-dimensional approximation Inverse Problems 5 541-57
    • (1989) Inverse Problems , vol.5 , pp. 541-557
    • Neubauer, A.1
  • 25
    • 0034316407 scopus 로고    scopus 로고
    • An inverse approach for the prediction of the temperature evolution during induction heating of a semi-solid casting billet
    • Nguyen K T and Bendata A 2000 An inverse approach for the prediction of the temperature evolution during induction heating of a semi-solid casting billet Modelling Simul. Mater. Sci. Eng. 8 857-70
    • (2000) Modelling Simul. Mater. Sci. Eng. , vol.8 , pp. 857-870
    • Nguyen, K.T.1    Bendata, A.2
  • 26
    • 0032105358 scopus 로고    scopus 로고
    • An inverse method for estimation of the initial temperature profile and its evolution in polymer processing
    • Nguyen K T and Prystay M 1999 An inverse method for estimation of the initial temperature profile and its evolution in polymer processing Int. J. Heat Mass Transfer 42 1969-78
    • (1999) Int. J. Heat Mass Transfer , vol.42 , pp. 1969-1978
    • Nguyen, K.T.1    Prystay, M.2
  • 27
    • 0034315150 scopus 로고    scopus 로고
    • Morozov's discrepancy principle for Tikhonov regularization of severely ill-posed problems in finite-dimensional subspaces
    • Pereverzev S and Schock E 2000 Morozov's discrepancy principle for Tikhonov regularization of severely ill-posed problems in finite-dimensional subspaces Numer. Funct. Anal. Optim. 21 901-16
    • (2000) Numer. Funct. Anal. Optim. , vol.21 , pp. 901-916
    • Pereverzev, S.1    Schock, E.2
  • 28
    • 31844435567 scopus 로고    scopus 로고
    • On the adaptive selection of the parameter in regularization of ill-posed problems
    • Schriften zur Funktionalanalysis und Geomathematik 1 (TU Kaiserslautern: Department of Mathematics) (at press)
    • Pereverzev S and Schock E 2003 On the adaptive selection of the parameter in regularization of ill-posed problems Schriften zur Funktionalanalysis und Geomathematik 1 (TU Kaiserslautern: Department of Mathematics) (SIAM J. Numer. Anal. at press)
    • (2003) SIAM J. Numer. Anal.
    • Pereverzev, S.1    Schock, E.2
  • 29
    • 31844452550 scopus 로고    scopus 로고
    • Initial temperature reconstruction for a nonlinear heat equation: Application to radiative and conductive heat transfer
    • ed D Lesnic (Leeds: Leeds University Press)
    • Pereverzyev S S, Pinnau R and Siedow N 2005 Initial temperature reconstruction for a nonlinear heat equation: application to radiative and conductive heat transfer 5th Int. Conf. on Inverse Problems in Engineering: Theory and Practice ed D Lesnic (Leeds: Leeds University Press) vol III pp P02:1-8
    • (2005) 5th Int. Conf. on Inverse Problems in Engineering: Theory and Practice , vol.3
    • Pereverzyev, S.S.1    Pinnau, R.2    Siedow, N.3
  • 31
    • 0010014032 scopus 로고
    • Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems
    • Scherzer O 1995 Convergence criteria of iterative methods based on Landweber iteration for solving nonlinear problems J. Math. Anal. Appl. 194 911-33
    • (1995) J. Math. Anal. Appl. , vol.194 , pp. 911-933
    • Scherzer, O.1
  • 32
    • 0012460727 scopus 로고
    • Approximate solution of ill-posed equations: Arbitrarily slow convergence vs. superconvergence
    • ed G Hämmerlein and K H Hoffmann (Basel: Birkhäuser)
    • Schock E 1985 Approximate solution of ill-posed equations: arbitrarily slow convergence vs. superconvergence Constructive Methods for the Practical Treatment of Integral Equations ed G Hämmerlein and K H Hoffmann (Basel: Birkhäuser) pp 234-43
    • (1985) Constructive Methods for the Practical Treatment of Integral Equations , pp. 234-243
    • Schock, E.1
  • 33
    • 0036609574 scopus 로고    scopus 로고
    • Nonlinear ill-posed equations: Counter-examples
    • Schock E 2002 Nonlinear ill-posed equations: counter-examples Inverse Problems 18 715-7
    • (2002) Inverse Problems , vol.18 , pp. 715-717
    • Schock, E.1
  • 34
    • 0010677370 scopus 로고
    • Error estimates for Tikhonov regularization in Hilbert scales
    • Schröter T and Tautenhahn U 1994 Error estimates for Tikhonov regularization in Hilbert scales Numer. Funct. Anal. Optim. 15 155-68
    • (1994) Numer. Funct. Anal. Optim. , vol.15 , pp. 155-168
    • Schröter, T.1    Tautenhahn, U.2
  • 35
    • 0010252570 scopus 로고    scopus 로고
    • On a general regularization scheme for nonlinear ill-posed problems
    • Tautenhahn U 1997 On a general regularization scheme for nonlinear ill-posed problems Inverse Problems 13 1427-37
    • (1997) Inverse Problems , vol.13 , pp. 1427-1437
    • Tautenhahn, U.1
  • 36
    • 0032047113 scopus 로고    scopus 로고
    • Optimality for ill-posed problems under general source conditions
    • Tautenhahn U 1998 Optimality for ill-posed problems under general source conditions Numer. Funct. Anal. Optim. 19 377-98
    • (1998) Numer. Funct. Anal. Optim. , vol.19 , pp. 377-398
    • Tautenhahn, U.1
  • 37
    • 0036469711 scopus 로고    scopus 로고
    • On the method of Lavrentiev regularization for nonlinear ill-posed problems
    • Tautenhahn U 2002 On the method of Lavrentiev regularization for nonlinear ill-posed problems Inverse Problems 18 191-207
    • (2002) Inverse Problems , vol.18 , pp. 191-207
    • Tautenhahn, U.1
  • 38
    • 0008442191 scopus 로고
    • Use of the regularization method in non-linear problems
    • Tikhonov A N and Glasko V B 1965 Use of the regularization method in non-linear problems USSR Comp. Math. Math. Phys. 5 93-107
    • (1965) USSR Comp. Math. Math. Phys. , vol.5 , pp. 93-107
    • Tikhonov, A.N.1    Glasko, V.B.2
  • 39
    • 0000528870 scopus 로고
    • On the optimality of methods for ill-posed problems
    • Vainikko G 1987 On the optimality of methods for ill-posed problems Z. Anal. Anwend. 6 351-62
    • (1987) Z. Anal. Anwend. , vol.6 , pp. 351-362
    • Vainikko, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.