메뉴 건너뛰기




Volumn 17, Issue 3, 1997, Pages 421-436

On convergence rates for the iteratively regularized Gauss-Newton method

Author keywords

[No Author keywords available]

Indexed keywords

MATHEMATICAL OPERATORS;

EID: 0031532935     PISSN: 02724979     EISSN: None     Source Type: Journal    
DOI: 10.1093/imanum/17.3.421     Document Type: Article
Times cited : (219)

References (11)
  • 1
    • 0000834834 scopus 로고
    • The problem of the convergence of the iteratively regularized Gauss-Newton method
    • BAKUSHINSKII, A. B. 1992 The problem of the convergence of the iteratively regularized Gauss-Newton method. Comput. Math. Math. Phys. 32, 1353-9.
    • (1992) Comput. Math. Math. Phys. , vol.32 , pp. 1353-1359
    • Bakushinskii, A.B.1
  • 2
    • 0040944132 scopus 로고
    • private communication
    • BAKUSHINSKII, A. B. 1994 private communication.
    • (1994)
    • Bakushinskii, A.B.1
  • 3
    • 0039758086 scopus 로고
    • Iterative Methods for the Solution of Incorrect Problems Moscow: Nauka (in Russian)
    • BAKUSHINSKII, A., & GONCHARSKY, A. 1989 Iterative Methods for the Solution of Incorrect Problems. Moscow: Nauka (in Russian).
    • (1989)
    • Bakushinskii, A.1    Goncharsky, A.2
  • 4
    • 36149030945 scopus 로고
    • Convergence rates for tikhonov regularization of nonlinear ill-posed problems
    • ENGL, H. W., KUNISCH, K., & NEUBAUER, A. 1989 Convergence rates for Tikhonov regularization of nonlinear ill-posed problems. Inverse Problems 5, 523-40.
    • (1989) Inverse Problems , vol.5 , pp. 523-540
    • Engl, H.W.1    Kunisch, K.2    Neubauer, A.3
  • 6
    • 0040893030 scopus 로고
    • A convergence analysis of the Landweber iteration for nonlinear ill-posed problems
    • HANKE, M., NEUBAUER, A., & SCHERZER, O. 1995 A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72, 21-37.
    • (1995) Numer. Math. , vol.72 , pp. 21-37
    • Hanke, M.1    Neubauer, A.2    Scherzer, O.3
  • 8
    • 0001425652 scopus 로고
    • Tikhonov regularization for nonlinear ill-posed problems: Optimal convergence and finite-dimensional approximation
    • NEUBAUER, A. 1989 Tikhonov regularization for nonlinear ill-posed problems: optimal convergence and finite-dimensional approximation. Inverse Problems 5, 541-57.
    • (1989) Inverse Problems , vol.5 , pp. 541-557
    • Neubauer, A.1
  • 9
    • 0027802743 scopus 로고
    • Optimal a-posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems
    • SCHERZER, O., ENGL, H. W., & KUNISCH, K. 1993 Optimal a-posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems. SIAM J. Numer. Anal. 30, 1796-838.
    • (1993) SIAM J. Numer. Anal. , vol.30 , pp. 1796-1838
    • Scherzer, O.1    Engl, H.W.2    Kunisch, K.3
  • 10
    • 0000027929 scopus 로고
    • Well-posedness and convergence of some regularization methods for nonlinear ill-posed problems
    • SEIDMAN, T. I., & VOGEL, C. R. 1989 Well-posedness and convergence of some regularization methods for nonlinear ill-posed problems. Inverse Problems 5, 227-38.
    • (1989) Inverse Problems , vol.5 , pp. 227-238
    • Seidman, T.I.1    Vogel, C.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.