-
1
-
-
1842848599
-
-
For a review on styryllactones from Goniothalamus species, see: M.A. Blàzquez, A. Bermejo, M.C. Zafra-Polo, and D. Cortes Phytochem. Anal. 10 1999 161
-
(1999)
Phytochem. Anal.
, vol.10
, pp. 161
-
-
Blàzquez, M.A.1
Bermejo, A.2
Zafra-Polo, M.C.3
Cortes, D.4
-
3
-
-
0032145138
-
-
M.C. Zafra-Polo, B. Figadère, T. Gallardo, J.R. Tormo, and D. Cortés Phytochemistry 48 1998 1087
-
(1998)
Phytochemistry
, vol.48
, pp. 1087
-
-
Zafra-Polo, M.C.1
Figadère, B.2
Gallardo, T.3
Tormo, J.R.4
Cortés, D.5
-
7
-
-
8844259714
-
-
V. Popsavin, S. Grabež, M. Popsavin, I. Krstić, V. Kojić, G. Bogdanović, and V. Divjaković Tetrahedron Lett. 45 2004 9409
-
(2004)
Tetrahedron Lett.
, vol.45
, pp. 9409
-
-
Popsavin, V.1
Grabež, S.2
Popsavin, M.3
Krstić, I.4
Kojić, V.5
Bogdanović, G.6
Divjaković, V.7
-
8
-
-
0037060073
-
-
E. Peris, A. Cavé, E. Estornell, M.C. Zafra-Polo, B. Figadère, D. Cortes, and A. Bermejo Tetrahedron 58 2002 1335
-
(2002)
Tetrahedron
, vol.58
, pp. 1335
-
-
Peris, E.1
Cavé, A.2
Estornell, E.3
Zafra-Polo, M.C.4
Figadère, B.5
Cortes, D.6
Bermejo, A.7
-
11
-
-
0035835944
-
-
Y.-L. Su, C.-S. Yang, S.-J. Teng, G. Zhao, and Y. Ding Tetrahedron 57 2001 2147
-
(2001)
Tetrahedron
, vol.57
, pp. 2147
-
-
Su, Y.-L.1
Yang, C.-S.2
Teng, S.-J.3
Zhao, G.4
Ding, Y.5
-
13
-
-
0032884767
-
-
H.B. Mereyala, R.R. Gadikota, M. Joe, S.K. Arora, S.G. Datidar, and S. Agarwal Bioorg. Med. Chem. 7 1999 2095
-
(1999)
Bioorg. Med. Chem.
, vol.7
, pp. 2095
-
-
Mereyala, H.B.1
Gadikota, R.R.2
Joe, M.3
Arora, S.K.4
Datidar, S.G.5
Agarwal, S.6
-
18
-
-
0030892391
-
-
C. Cagnolini, M. Ferri, P.R. Jones, P.J. Murphy, B. Ayres, and B. Cox Tetrahedron 53 1997 4815
-
(1997)
Tetrahedron
, vol.53
, pp. 4815
-
-
Cagnolini, C.1
Ferri, M.2
Jones, P.R.3
Murphy, P.J.4
Ayres, B.5
Cox, B.6
-
19
-
-
0029875705
-
-
C. Mukai, S. Hirai, I.J. Km, M. Kido, and M. Hanaoka Tetrahedron 52 1996 6547
-
(1996)
Tetrahedron
, vol.52
, pp. 6547
-
-
Mukai, C.1
Hirai, S.2
Km, I.J.3
Kido, M.4
Hanaoka, M.5
-
26
-
-
0026758501
-
-
T.K.M. Shine, H.C. Tsui, and Z.H. Zhou Tetrahedron 48 1992 8659 Absolute configurations of these styryl groups are in accord with those of all suggested biogenetic precursors and allowed to propose the absolute configurations of related cytotoxic styryllactones and strucutures of potential biosynthetic intermediates not identified so far, see: Ref. 4q
-
(1992)
Tetrahedron
, vol.48
, pp. 8659
-
-
Shine, T.K.M.1
Tsui, H.C.2
Zhou, Z.H.3
-
27
-
-
0037322990
-
-
A. Hisham, M. Toubi, W. Shuaily, M.D. Ajitha Bai, and Y. Fujimoto Phytochemistry 62 2003 597
-
(2003)
Phytochemistry
, vol.62
, pp. 597
-
-
Hisham, A.1
Toubi, M.2
Shuaily, W.3
Ajitha Bai, M.D.4
Fujimoto, Y.5
-
32
-
-
31444450223
-
-
note
-
Similar carbohydrate-derived starting materials were also applied to the total synthesis of related styryllactones. For example, see: Ref. 4o. Direct treatment of 9 according to the following reaction sequence cited in Scheme 1 yielded only intractable materials at the final step of acetonide-deprotection.
-
-
-
-
33
-
-
31444435540
-
-
note
-
It is not necessarily to determine the absolute configuration at this anomer center, since the lactol function should be oxidized to the corresponding lactone at the final stage for the synthesis of 1.
-
-
-
-
36
-
-
31444456184
-
-
note
-
The absolute configuration of the newly created stereogenic center of 13b was easily characterized to be R after derivatization via the mesylate 19 to the corresponding cis-epoxide 20 as shown below.
-
-
-
-
37
-
-
0002793868
-
-
b) was 4.38 Hz, which indicates the epoxide in 20 occupy the cis-relation;
-
b) was 4.38 Hz, which indicates the epoxide in 20 occupy the cis-relation; see: K. Tanaka, H. Horiuchi, and H. Yoda J. Org. Chem. 54 1989 63
-
(1989)
J. Org. Chem.
, vol.54
, pp. 63
-
-
Tanaka, K.1
Horiuchi, H.2
Yoda, H.3
-
38
-
-
0000822952
-
-
M. Shimagaki, T. Maeda, Y. Matsuzaki, I. Mori, T. Nakata, and T. Oishi Tetrahedron Lett. 25 1984 4775
-
(1984)
Tetrahedron Lett.
, vol.25
, pp. 4775
-
-
Shimagaki, M.1
Maeda, T.2
Matsuzaki, Y.3
Mori, I.4
Nakata, T.5
Oishi, T.6
-
39
-
-
31444454838
-
-
note
-
Compound 13a was also estimated to have the same configuration based on the similarity of its spectral data to those of 13b.
-
-
-
-
40
-
-
31444455495
-
-
note
-
When reduction of the labile hemiketal intermediate derived from 12b was carried out under slightly different conditions (change of the reduction temperature from -40 to -20°C), the reaction occurred with unsatisfactory stereoselectivity to give the mixture of the two diastereomers (13b : 14b = 86:14). It is consequently apparent that stereochemical outcome in these reactions strongly depends on the two factors; (a) steric bulkiness of the protecting groups in 12 and (b) reduction temperature of the hemiketal intermediates. These results can be explained that the reaction would proceed simply in terms of the thermodynamically more stable Cram's non-chelation transition structure.
-
-
-
-
41
-
-
31444432975
-
-
note
-
The absolute R-configuration of the generated stereogenic center was determined unambiguously based on its spectral data of synthetic (+)-1.
-
-
-
-
42
-
-
31444433841
-
-
note
-
3-mediated six-membered metal-chelate structure due to the bottom-face shielding effect of the three large functional groups described below.
-
-
-
-
43
-
-
0030605868
-
-
The same type of transition metal halide-promoted six-membered chelating reactions have already been demonstrated in this laboratory with high stereoselectivity; see: H. Yoda, T. Nakajima, and K. Takabe Tetrahedron Lett. 37 1996 5531
-
(1996)
Tetrahedron Lett.
, vol.37
, pp. 5531
-
-
Yoda, H.1
Nakajima, T.2
Takabe, K.3
|