메뉴 건너뛰기




Volumn 18, Issue 4, 2004, Pages 607-625

Learning bayesian networks in the space of orderings with estimation of distribution algorithms

Author keywords

Bayesian networks; Estimation of distribution algorithms; Experimental results; Learning from data; Space of orderings

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; DATA PROCESSING; HEURISTIC METHODS; OPTIMIZATION; PROBABILITY DISTRIBUTIONS; PROBLEM SOLVING; RANDOM PROCESSES;

EID: 3142753388     PISSN: 02180014     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218001404003332     Document Type: Article
Times cited : (24)

References (33)
  • 4
    • 0036887533 scopus 로고    scopus 로고
    • Learning and simulation of Bayesian networks applied to inexact graph matching
    • E. Bengoetxea, P. Larrañaga, I. Bloch, A. Perchant and C. Boeres, Learning and simulation of Bayesian networks applied to inexact graph matching, Patt. Recogn. 35 (2002) 2867-2880.
    • (2002) Patt. Recogn. , vol.35 , pp. 2867-2880
    • Bengoetxea, E.1    Larrañaga, P.2    Bloch, I.3    Perchant, A.4    Boeres, C.5
  • 6
    • 0037322292 scopus 로고    scopus 로고
    • Learning Bayesian network structures by estimation of distribution algorithms
    • R. Blanco, I. Inza and P. Larrañaga, Learning Bayesian network structures by estimation of distribution algorithms, Int. J. Intell. Syst. 18 (2003) 205-220.
    • (2003) Int. J. Intell. Syst. , vol.18 , pp. 205-220
    • Blanco, R.1    Inza, I.2    Larrañaga, P.3
  • 7
    • 0008543956 scopus 로고
    • Optimizing causal orderings for generating DAGs from data
    • Morgan Kaufmann Publishers
    • R. R. Bouckaert, Optimizing causal orderings for generating DAGs from data, Uncertainty in Artificial Intelligence, Vol. 8 (Morgan Kaufmann Publishers, 1992), pp. 9-16.
    • (1992) Uncertainty in Artificial Intelligence , vol.8 , pp. 9-16
    • Bouckaert, R.R.1
  • 9
  • 10
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. F. Cooper and E. Herskovits, A Bayesian method for the induction of probabilistic networks from data, Mach. Learn. 9 (1992) 309-347.
    • (1992) Mach. Learn. , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 11
    • 3142658164 scopus 로고    scopus 로고
    • Norsys Software Corp., Netica software package. http://www.norsys.com, 1998.
    • (1998) Netica Software Package
  • 14
    • 0002012598 scopus 로고    scopus 로고
    • The ant colony optimization meta-heuristic
    • eds. D. Corne, M. Dorigo and F. Glover McGraw-Hill, London
    • M. Dorigo and G. Di Caro, The ant colony optimization meta-heuristic, in New Ideas in Optimization, eds. D. Corne, M. Dorigo and F. Glover (McGraw-Hill, London, 1999), pp. 11-32.
    • (1999) New Ideas in Optimization , pp. 11-32
    • Dorigo, M.1    Di Caro, G.2
  • 15
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure. An Bayesian approach to structure discovery in Bayesian networks
    • N. Friedman and D. Koller, Being Bayesian about network structure. An Bayesian approach to structure discovery in Bayesian networks, Mach. Learn. 50 (2003) 95-125.
    • (2003) Mach. Learn. , vol.50 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 17
    • 0001247275 scopus 로고
    • Propagating uncertainty in Bayesian networks by probabilistic logic sampling
    • M. Henrion, Propagating uncertainty in Bayesian networks by probabilistic logic sampling, Uncertainty in Artificial Intelligence, Vol. 2, 1988.
    • (1988) Uncertainty in Artificial Intelligence , vol.2
    • Henrion, M.1
  • 19
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • S. Kirpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by simulated annealing, Science 220 (1983) 671-680.
    • (1983) Science , vol.220 , pp. 671-680
    • Kirpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 20
    • 0004069443 scopus 로고    scopus 로고
    • Optimization by learning and simulation of Bayesian and Gaussian networks
    • University of the Basque Country
    • P. Larrañaga, R. Etxeberria, J. A. Lozano and J. M. Peña, Optimization by learning and simulation of Bayesian and Gaussian networks, Technical Report EHU-KZAA-IK-4/99, University of the Basque Country, 1999.
    • (1999) Technical Report , vol.EHU-KZAA-IK-4-99
    • Larrañaga, P.1    Etxeberria, R.2    Lozano, J.A.3    Peña, J.M.4
  • 23
    • 0001006209 scopus 로고    scopus 로고
    • Local computations with probabilities on graphical structures and their application on expert systems
    • S. L. Lauritzen and D. J. Spiegelhalter, Local computations with probabilities on graphical structures and their application on expert systems, J. Roy. Stat. Soc. B 50 (1998) 157-224.
    • (1998) J. Roy. Stat. Soc. B , vol.50 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 25
    • 0031215849 scopus 로고    scopus 로고
    • The equation for response to selection and its use for prediction
    • H. Mühlenbein, The equation for response to selection and its use for prediction, Evolut. Comput. 5 (1998) 303-346.
    • (1998) Evolut. Comput. , vol.5 , pp. 303-346
    • Mühlenbein, H.1
  • 26
    • 0005274465 scopus 로고    scopus 로고
    • Gene pool recombination in genetic algorithms
    • eds. J. P. Kelly and I. H. Osman Kluwer Academic
    • H. Mühlenbein and H. Voigt, Gene pool recombination in genetic algorithms, in Metaheuristics: Theory and Applications, eds. J. P. Kelly and I. H. Osman (Kluwer Academic, 1996), pp. 53-62.
    • (1996) Metaheuristics: Theory and Applications , pp. 53-62
    • Mühlenbein, H.1    Voigt, H.2
  • 29
    • 8444244894 scopus 로고    scopus 로고
    • Unsupervised learning of Bayesian networks via estimation of distribution algorithms: An application to gene expression data clustering
    • J. M. Peña, J. A. Lozano and P. Larrañaga, Unsupervised learning of Bayesian networks via estimation of distribution algorithms: an application to gene expression data clustering, Int. J. Uncert. Fuzz. Knowledge-Based Syst. 12 (2003) 63-82.
    • (2003) Int. J. Uncert. Fuzz. Knowledge-Based Syst. , vol.12 , pp. 63-82
    • Peña, J.M.1    Lozano, J.A.2    Larrañaga, P.3
  • 32
    • 0000987741 scopus 로고
    • Gaussian influence diagrams
    • R. S. Shachter and C. R. Kenley, Gaussian influence diagrams, Manag. Sci. 35 (1989) 527-550.
    • (1989) Manag. Sci. , vol.35 , pp. 527-550
    • Shachter, R.S.1    Kenley, C.R.2
  • 33
    • 0003389370 scopus 로고
    • The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best
    • D. Whitley, The GENITOR algorithm and selection pressure: why rank-based allocation of reproductive trials is best, in Proc. 3rd Int. Conf. Genetic Algorithms, 1989, pp. 116-121.
    • (1989) Proc. 3rd Int. Conf. Genetic Algorithms , pp. 116-121
    • Whitley, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.