-
2
-
-
0026955102
-
Handwritten digit recognition by neural networks with single-layer training
-
S. Knerr, L. Personnaz, and G. Dreyfus, " Handwritten digit recognition by neural networks with single-layer training," IEEE Trans. on Neural Networks, vol. 6, pp. 962-969, 1992.
-
(1992)
IEEE Trans. on Neural Networks
, vol.6
, pp. 962-969
-
-
Knerr, S.1
Personnaz, L.2
Dreyfus, G.3
-
4
-
-
84947591280
-
Extracting directional information for the recognition of finger-prints by pRAM networks
-
World Scientific
-
T.G. Clarkson and Y. Ding, RAM-Based Neural Networks, chap. 'Extracting directional information for the recognition of finger-prints by pRAM networks,' World Scientific, 1998, pp. 174-185.
-
(1998)
RAM-Based Neural Networks, Chap.
, pp. 174-185
-
-
Clarkson, T.G.1
Ding, Y.2
-
5
-
-
0030393281
-
Adaptive sensor models
-
Washington DC, Dec.
-
J.W.M. Van Dam, B.J.A. Krose, and F.C.A. Groen, " Adaptive sensor models," in Proc. of 1996 International Conference on Multisensor Fusion and Integration for Intelligent Systems, Washington DC, Dec. 1996, pp. 705-712.
-
(1996)
Proc. of 1996 International Conference on Multisensor Fusion and Integration for Intelligent Systems
, pp. 705-712
-
-
Van Dam, J.W.M.1
Krose, B.J.A.2
Groen, F.C.A.3
-
6
-
-
0032218859
-
Neural network implementation using distributed arithmetic
-
Adelaide, Australia
-
T. Szabó, B. Fehér, and G. Horváth, " Neural network implementation using distributed arithmetic," in Proceedings of the International Conference on Knowledge-Based Electronic Systems, Adelaide, Australia, 1998, vol. 3, pp. 511-520.
-
(1998)
Proceedings of the International Conference on Knowledge-Based Electronic Systems
, vol.3
, pp. 511-520
-
-
Szabó, T.1
Fehér, B.2
Horváth, G.3
-
7
-
-
0033703460
-
An efficient implementation for a matrix-vector multiplier structure
-
IJCNN2000
-
T. Szabó, L. Antoni, G. Horváth, and B. Fehér, " An efficient implementation for a matrix-vector multiplier structure," in Proceedings of IEEE International Joint Conference on Neural Networtks, IJCNN2000, 2000, vol. II, pp. 49-54.
-
(2000)
Proceedings of IEEE International Joint Conference on Neural Networtks
, vol.2
, pp. 49-54
-
-
Szabó, T.1
Antoni, L.2
Horváth, G.3
Fehér, B.4
-
9
-
-
0345195977
-
Universal approximation using feed-forward neural networks: A survey of some existing methods and some new results
-
F. Scarselli and A.C. Tsoi, " Universal approximation using feed-forward neural networks: A survey of some existing methods and some new results," Neural Networks, vol. 11, no. 1, pp. 15-37, 1998.
-
(1998)
Neural Networks
, vol.11
, Issue.1
, pp. 15-37
-
-
Scarselli, F.1
Tsoi, A.C.2
-
10
-
-
3142713709
-
Approximation of functions by neural networks
-
V. Kurková, " Approximation of functions by neural networks," in Proceedings of NC'98, 1998, pp. 29-36.
-
(1998)
Proceedings of NC'98
, pp. 29-36
-
-
Kurková, V.1
-
11
-
-
0025558060
-
Approximating and learning unknown mappings using multilayer networks with bounded weights
-
IEEE Press
-
M.B. Stinchcombe and H. White, " Approximating and learning unknown mappings using multilayer networks with bounded weights," in Proc. of Int. Joint Conference on Neural Networks, IJCNN'90, IEEE Press, 1990, vol. III, pp. 7-16.
-
(1990)
Proc. of Int. Joint Conference on Neural Networks, IJCNN'90
, vol.3
, pp. 7-16
-
-
Stinchcombe, M.B.1
White, H.2
-
12
-
-
0027262895
-
Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
-
M. Leshno, V.Ya. Lin, A. Pinkus, and S. Schocken, " Multilayer feedforward networks with a nonpolynomial activation function can approximate any function," Neural Networks, vol. 6, pp. 861-867, 1993.
-
(1993)
Neural Networks
, vol.6
, pp. 861-867
-
-
Leshno, M.1
Lin, V.Y.2
Pinkus, A.3
Schocken, S.4
-
13
-
-
0027812765
-
Some new results on neural network approximatiom
-
K. Hornik, " Some new results on neural network approximatiom," Neural Networks, vol. 6, pp. 1069-1072, 1993.
-
(1993)
Neural Networks
, vol.6
, pp. 1069-1072
-
-
Hornik, K.1
-
16
-
-
0026627415
-
Kolmogorov's theorem and multilayer neural networks
-
V. Kurková, " Kolmogorov's theorem and multilayer neural networks," Neural Networks, vol. 5, pp. 501-506, 1992.
-
(1992)
Neural Networks
, vol.5
, pp. 501-506
-
-
Kurková, V.1
-
17
-
-
84968480734
-
Computation of best monotone approximations
-
J.T. Lewis, " Computation of best monotone approximations," Mathematics of Computation, vol. 26, no. 119, pp. 737-747, 1972.
-
(1972)
Mathematics of Computation
, vol.26
, Issue.119
, pp. 737-747
-
-
Lewis, J.T.1
-
18
-
-
0040938588
-
Monotone approximation by splines
-
R.A. De Vore, " Monotone approximation by splines," SIAM J. Math. Anal., vol. 8, no. 5, pp. 891-905, 1977.
-
(1977)
SIAM J. Math. Anal.
, vol.8
, Issue.5
, pp. 891-905
-
-
De Vore, R.A.1
-
19
-
-
0001610511
-
Monotone and convex spline interpolation
-
E. Passow and J.A. Roulier, " Monotone and convex spline interpolation," SIAM J. Numer. Anal, vol. 14, no. 5, pp. 904-909, 1977.
-
(1977)
SIAM J. Numer. Anal
, vol.14
, Issue.5
, pp. 904-909
-
-
Passow, E.1
Roulier, J.A.2
-
20
-
-
21344492258
-
On monotone spline approximation
-
X.M. Yu and S.P. Zhou, " On monotone spline approximation," SIAM J. Math. Anal., vol. 25, no. 4, pp. 1227-1239, 1994.
-
(1994)
SIAM J. Math. Anal.
, vol.25
, Issue.4
, pp. 1227-1239
-
-
Yu, X.M.1
Zhou, S.P.2
-
21
-
-
0009010927
-
Learning from corrupted examples in multilayer perceptions
-
Aston University, UK
-
D. Saal and S. Solla, " Learning from corrupted examples in multilayer perceptions," Tech. Rep., Aston University, UK, 1996.
-
(1996)
Tech. Rep.
-
-
Saal, D.1
Solla, S.2
-
22
-
-
0003421109
-
-
User Manual 4.2
-
University of Stuttgart, Institute of Parallel and Distributed High-Performance Systems (IPVR), http://www.informatik.uni-stuttgart.de/ipvr/bv/ projekte/snns/snns.html, Stuttgart Neural Network Simulator, User Manual 4.2, 2000.
-
(2000)
Stuttgart Neural Network Simulator
-
-
|