메뉴 건너뛰기




Volumn 21, Issue 2 SPEC. ISS., 2004, Pages 143-158

An efficient hardware implementation of feed-forward neural networks

Author keywords

Activation function; B spline approximation; Feed forward neural networks; Hardware implementation

Indexed keywords

ALGORITHMS; COMPUTATIONAL METHODS; DISTRIBUTED COMPUTER SYSTEMS; ERROR ANALYSIS; MATRIX ALGEBRA; OPTIMIZATION; POLYNOMIALS; THEOREM PROVING; VECTORS;

EID: 3142744693     PISSN: 0924669X     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:APIN.0000033634.62074.46     Document Type: Conference Paper
Times cited : (11)

References (22)
  • 2
    • 0026955102 scopus 로고
    • Handwritten digit recognition by neural networks with single-layer training
    • S. Knerr, L. Personnaz, and G. Dreyfus, " Handwritten digit recognition by neural networks with single-layer training," IEEE Trans. on Neural Networks, vol. 6, pp. 962-969, 1992.
    • (1992) IEEE Trans. on Neural Networks , vol.6 , pp. 962-969
    • Knerr, S.1    Personnaz, L.2    Dreyfus, G.3
  • 4
    • 84947591280 scopus 로고    scopus 로고
    • Extracting directional information for the recognition of finger-prints by pRAM networks
    • World Scientific
    • T.G. Clarkson and Y. Ding, RAM-Based Neural Networks, chap. 'Extracting directional information for the recognition of finger-prints by pRAM networks,' World Scientific, 1998, pp. 174-185.
    • (1998) RAM-Based Neural Networks, Chap. , pp. 174-185
    • Clarkson, T.G.1    Ding, Y.2
  • 9
    • 0345195977 scopus 로고    scopus 로고
    • Universal approximation using feed-forward neural networks: A survey of some existing methods and some new results
    • F. Scarselli and A.C. Tsoi, " Universal approximation using feed-forward neural networks: A survey of some existing methods and some new results," Neural Networks, vol. 11, no. 1, pp. 15-37, 1998.
    • (1998) Neural Networks , vol.11 , Issue.1 , pp. 15-37
    • Scarselli, F.1    Tsoi, A.C.2
  • 10
    • 3142713709 scopus 로고    scopus 로고
    • Approximation of functions by neural networks
    • V. Kurková, " Approximation of functions by neural networks," in Proceedings of NC'98, 1998, pp. 29-36.
    • (1998) Proceedings of NC'98 , pp. 29-36
    • Kurková, V.1
  • 11
    • 0025558060 scopus 로고
    • Approximating and learning unknown mappings using multilayer networks with bounded weights
    • IEEE Press
    • M.B. Stinchcombe and H. White, " Approximating and learning unknown mappings using multilayer networks with bounded weights," in Proc. of Int. Joint Conference on Neural Networks, IJCNN'90, IEEE Press, 1990, vol. III, pp. 7-16.
    • (1990) Proc. of Int. Joint Conference on Neural Networks, IJCNN'90 , vol.3 , pp. 7-16
    • Stinchcombe, M.B.1    White, H.2
  • 12
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • M. Leshno, V.Ya. Lin, A. Pinkus, and S. Schocken, " Multilayer feedforward networks with a nonpolynomial activation function can approximate any function," Neural Networks, vol. 6, pp. 861-867, 1993.
    • (1993) Neural Networks , vol.6 , pp. 861-867
    • Leshno, M.1    Lin, V.Y.2    Pinkus, A.3    Schocken, S.4
  • 13
    • 0027812765 scopus 로고
    • Some new results on neural network approximatiom
    • K. Hornik, " Some new results on neural network approximatiom," Neural Networks, vol. 6, pp. 1069-1072, 1993.
    • (1993) Neural Networks , vol.6 , pp. 1069-1072
    • Hornik, K.1
  • 16
    • 0026627415 scopus 로고
    • Kolmogorov's theorem and multilayer neural networks
    • V. Kurková, " Kolmogorov's theorem and multilayer neural networks," Neural Networks, vol. 5, pp. 501-506, 1992.
    • (1992) Neural Networks , vol.5 , pp. 501-506
    • Kurková, V.1
  • 17
    • 84968480734 scopus 로고
    • Computation of best monotone approximations
    • J.T. Lewis, " Computation of best monotone approximations," Mathematics of Computation, vol. 26, no. 119, pp. 737-747, 1972.
    • (1972) Mathematics of Computation , vol.26 , Issue.119 , pp. 737-747
    • Lewis, J.T.1
  • 18
    • 0040938588 scopus 로고
    • Monotone approximation by splines
    • R.A. De Vore, " Monotone approximation by splines," SIAM J. Math. Anal., vol. 8, no. 5, pp. 891-905, 1977.
    • (1977) SIAM J. Math. Anal. , vol.8 , Issue.5 , pp. 891-905
    • De Vore, R.A.1
  • 19
    • 0001610511 scopus 로고
    • Monotone and convex spline interpolation
    • E. Passow and J.A. Roulier, " Monotone and convex spline interpolation," SIAM J. Numer. Anal, vol. 14, no. 5, pp. 904-909, 1977.
    • (1977) SIAM J. Numer. Anal , vol.14 , Issue.5 , pp. 904-909
    • Passow, E.1    Roulier, J.A.2
  • 20
    • 21344492258 scopus 로고
    • On monotone spline approximation
    • X.M. Yu and S.P. Zhou, " On monotone spline approximation," SIAM J. Math. Anal., vol. 25, no. 4, pp. 1227-1239, 1994.
    • (1994) SIAM J. Math. Anal. , vol.25 , Issue.4 , pp. 1227-1239
    • Yu, X.M.1    Zhou, S.P.2
  • 21
    • 0009010927 scopus 로고    scopus 로고
    • Learning from corrupted examples in multilayer perceptions
    • Aston University, UK
    • D. Saal and S. Solla, " Learning from corrupted examples in multilayer perceptions," Tech. Rep., Aston University, UK, 1996.
    • (1996) Tech. Rep.
    • Saal, D.1    Solla, S.2
  • 22
    • 0003421109 scopus 로고    scopus 로고
    • User Manual 4.2
    • University of Stuttgart, Institute of Parallel and Distributed High-Performance Systems (IPVR), http://www.informatik.uni-stuttgart.de/ipvr/bv/ projekte/snns/snns.html, Stuttgart Neural Network Simulator, User Manual 4.2, 2000.
    • (2000) Stuttgart Neural Network Simulator


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.