메뉴 건너뛰기




Volumn 16, Issue 9, 2004, Pages 1811-1825

Blind separation of positive sources by globally convergent gradient search

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; COMPARATIVE STUDY; COMPUTER SIMULATION; HUMAN; IMAGE PROCESSING; NONLINEAR SYSTEM; SIGNAL PROCESSING; STATISTICAL MODEL;

EID: 3142702668     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/0899766041336413     Document Type: Article
Times cited : (71)

References (22)
  • 3
    • 0005819124 scopus 로고    scopus 로고
    • Modelling multiple-cause structure using rectification constraints
    • Charles, D., & Fyfe, C. (1998). Modelling multiple-cause structure using rectification constraints. Network: Computation in Neural Systems, 9, 167-182.
    • (1998) Network: Computation in Neural Systems , vol.9 , pp. 167-182
    • Charles, D.1    Fyfe, C.2
  • 4
    • 0032216898 scopus 로고    scopus 로고
    • The geometry of algorithms with orthogonality constraints
    • Edelman, A., Arias, T. A., & Smith, S. T. (1998). The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl., 20(2), 303-353.
    • (1998) SIAM J. Matrix Anal. Appl. , vol.20 , Issue.2 , pp. 303-353
    • Edelman, A.1    Arias, T.A.2    Smith, S.T.3
  • 5
    • 0001586142 scopus 로고    scopus 로고
    • A theory for learning by weight flow on Stiefel-Grassman manifold
    • Fiori, S. (2001). A theory for learning by weight flow on Stiefel-Grassman manifold. Neural Computation, 13, 1625-1647.
    • (2001) Neural Computation , vol.13 , pp. 1625-1647
    • Fiori, S.1
  • 8
    • 0037185374 scopus 로고    scopus 로고
    • Multivariate receptor models - Current practice and future trends
    • Henry, R. C. (2002). Multivariate receptor models - current practice and future trends. Chemometrics and Intelligent Laboratory Systems, 60(1-2), 43-48.
    • (2002) Chemometrics and Intelligent Laboratory Systems , vol.60 , Issue.1-2 , pp. 43-48
    • Henry, R.C.1
  • 10
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by nonnegative matrix factorization. Nature, 401, 788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 11
    • 0037721406 scopus 로고    scopus 로고
    • Application of nonnegative matrix factorization to dynamic positron emission tomography
    • T.-W. Lee, T.-P. Jung, S. Makeig, & T. J. Sejnowski (Eds.), San Diego, California San Diego, CA: Institute of Neural Computation, University of California, San Diego
    • Lee, J. S., Lee, D. D., Choi, S., & Lee, D. S. (2001). Application of nonnegative matrix factorization to dynamic positron emission tomography. In T.-W. Lee, T.-P. Jung, S. Makeig, & T. J. Sejnowski (Eds.), Proceedings of the International Conference on Independent Component Analysis and Signal Separation (ICA2001), San Diego, California (pp. 629-632). San Diego, CA: Institute of Neural Computation, University of California, San Diego.
    • (2001) Proceedings of the International Conference on Independent Component Analysis and Signal Separation (ICA2001) , pp. 629-632
    • Lee, J.S.1    Lee, D.D.2    Choi, S.3    Lee, D.S.4
  • 12
    • 0004121838 scopus 로고
    • Baldock, U.K.: Research Studies Press, and New York: Wiley
    • Oja, E. (1983). Subspace methods of pattern recognition. Baldock, U.K.: Research Studies Press, and New York: Wiley.
    • (1983) Subspace Methods of Pattern Recognition
    • Oja, E.1
  • 13
    • 0343416807 scopus 로고    scopus 로고
    • The nonlinear PCA learning rule in independent component analysis
    • Oja, E. (1997). The nonlinear PCA learning rule in independent component analysis. Neurocomputing, 17(1), 25-46.
    • (1997) Neurocomputing , vol.17 , Issue.1 , pp. 25-46
    • Oja, E.1
  • 14
    • 0002813661 scopus 로고    scopus 로고
    • Nonlinear PCA criterion and maximum likelihood in independent component analysis
    • Aussois, France: ICA 1999 Organizing Committee, Institut National Polytechnique de Grenoble, Prance
    • Oja, E. (1999). Nonlinear PCA criterion and maximum likelihood in independent component analysis. In Proc. Int. Workshop on Independent Component Analysis and Signal Separation (ICA'99) (pp. 143-148). Aussois, France: ICA 1999 Organizing Committee, Institut National Polytechnique de Grenoble, Prance.
    • (1999) Proc. Int. Workshop on Independent Component Analysis and Signal Separation (ICA'99) , pp. 143-148
    • Oja, E.1
  • 15
    • 1242316846 scopus 로고    scopus 로고
    • Blind separation of positive sources using nonnegative ICA
    • Kyoto, Japan: ICA 2003 Organizing Committee, NTT Communication Science Laboratories
    • Oja, E., & Plumbley, M. D. (2003). Blind separation of positive sources using nonnegative ICA. In Proc. Int. Workshop on Independent Component Analysis and Signal Separation (ICA'03). Kyoto, Japan: ICA 2003 Organizing Committee, NTT Communication Science Laboratories.
    • (2003) Proc. Int. Workshop on Independent Component Analysis and Signal Separation (ICA'03)
    • Oja, E.1    Plumbley, M.D.2
  • 16
    • 0028561099 scopus 로고
    • Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values
    • Paatero, P., & Tapper, U. (1994). Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values. Environmetrics, 5, 111-126.
    • (1994) Environmetrics , vol.5 , pp. 111-126
    • Paatero, P.1    Tapper, U.2
  • 18
    • 0036612776 scopus 로고    scopus 로고
    • Conditions for nonnegative independent component analysis
    • Plumbley, M. D. (2002). Conditions for nonnegative independent component analysis. IEEE Signal Processing Letters, 9(6), 177-180.
    • (2002) IEEE Signal Processing Letters , vol.9 , Issue.6 , pp. 177-180
    • Plumbley, M.D.1
  • 19
    • 0038460232 scopus 로고    scopus 로고
    • Algorithms for non-negative independent component analysis
    • Plumbley, M. D. (2003). Algorithms for non-negative independent component analysis. IEEE Transactions on Neural Networks, 14(3), 534-543.
    • (2003) IEEE Transactions on Neural Networks , vol.14 , Issue.3 , pp. 534-543
    • Plumbley, M.D.1
  • 20
    • 1242331294 scopus 로고    scopus 로고
    • A "non-negative PCA" algorithm for independent component analysis
    • Plumbley, M. D., & Oja, E. (2004). A "non-negative PCA" algorithm for independent component analysis. IEEE Transactions on Neural Networks, 15(1), 66-76.
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.1 , pp. 66-76
    • Plumbley, M.D.1    Oja, E.2
  • 21
  • 22
    • 0027206958 scopus 로고
    • Least mean square error reconstruction principle for self-organizing neural-nets
    • Xu, L. (1993). Least mean square error reconstruction principle for self-organizing neural-nets. Neural Networks, 6(5), 627-648.
    • (1993) Neural Networks , vol.6 , Issue.5 , pp. 627-648
    • Xu, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.