-
2
-
-
0030417779
-
Equivariant adaptive source separation
-
Cardoso, J.-F, & Laheld, B. H. (1996). Equivariant adaptive source separation. IEEE Transactions on Signal Processing, 44(12), 3017-3030.
-
(1996)
IEEE Transactions on Signal Processing
, vol.44
, Issue.12
, pp. 3017-3030
-
-
Cardoso, J.-F.1
Laheld, B.H.2
-
3
-
-
0005819124
-
Modelling multiple-cause structure using rectification constraints
-
Charles, D., & Fyfe, C. (1998). Modelling multiple-cause structure using rectification constraints. Network: Computation in Neural Systems, 9, 167-182.
-
(1998)
Network: Computation in Neural Systems
, vol.9
, pp. 167-182
-
-
Charles, D.1
Fyfe, C.2
-
4
-
-
0032216898
-
The geometry of algorithms with orthogonality constraints
-
Edelman, A., Arias, T. A., & Smith, S. T. (1998). The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl., 20(2), 303-353.
-
(1998)
SIAM J. Matrix Anal. Appl.
, vol.20
, Issue.2
, pp. 303-353
-
-
Edelman, A.1
Arias, T.A.2
Smith, S.T.3
-
5
-
-
0001586142
-
A theory for learning by weight flow on Stiefel-Grassman manifold
-
Fiori, S. (2001). A theory for learning by weight flow on Stiefel-Grassman manifold. Neural Computation, 13, 1625-1647.
-
(2001)
Neural Computation
, vol.13
, pp. 1625-1647
-
-
Fiori, S.1
-
6
-
-
3142671651
-
Positive weights in interneurons
-
G. Orchard (Ed.), Belfast, Northern Ireland, 1-2 Sept 1993. Belfast, NI: Irish Neural Networks Association
-
Fyfe, C. (1994). Positive weights in interneurons. In G. Orchard (Ed.), Neural computing: Research and applications II. Proceedings of the Third Irish Neural Networks Conference, Belfast, Northern Ireland, 1-2 Sept 1993 (pp. 47-58). Belfast, NI: Irish Neural Networks Association.
-
(1994)
Neural Computing: Research and Applications II. Proceedings of the Third Irish Neural Networks Conference
, pp. 47-58
-
-
Fyfe, C.1
-
8
-
-
0037185374
-
Multivariate receptor models - Current practice and future trends
-
Henry, R. C. (2002). Multivariate receptor models - current practice and future trends. Chemometrics and Intelligent Laboratory Systems, 60(1-2), 43-48.
-
(2002)
Chemometrics and Intelligent Laboratory Systems
, vol.60
, Issue.1-2
, pp. 43-48
-
-
Henry, R.C.1
-
10
-
-
0033592606
-
Learning the parts of objects by nonnegative matrix factorization
-
Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by nonnegative matrix factorization. Nature, 401, 788-791.
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
11
-
-
0037721406
-
Application of nonnegative matrix factorization to dynamic positron emission tomography
-
T.-W. Lee, T.-P. Jung, S. Makeig, & T. J. Sejnowski (Eds.), San Diego, California San Diego, CA: Institute of Neural Computation, University of California, San Diego
-
Lee, J. S., Lee, D. D., Choi, S., & Lee, D. S. (2001). Application of nonnegative matrix factorization to dynamic positron emission tomography. In T.-W. Lee, T.-P. Jung, S. Makeig, & T. J. Sejnowski (Eds.), Proceedings of the International Conference on Independent Component Analysis and Signal Separation (ICA2001), San Diego, California (pp. 629-632). San Diego, CA: Institute of Neural Computation, University of California, San Diego.
-
(2001)
Proceedings of the International Conference on Independent Component Analysis and Signal Separation (ICA2001)
, pp. 629-632
-
-
Lee, J.S.1
Lee, D.D.2
Choi, S.3
Lee, D.S.4
-
12
-
-
0004121838
-
-
Baldock, U.K.: Research Studies Press, and New York: Wiley
-
Oja, E. (1983). Subspace methods of pattern recognition. Baldock, U.K.: Research Studies Press, and New York: Wiley.
-
(1983)
Subspace Methods of Pattern Recognition
-
-
Oja, E.1
-
13
-
-
0343416807
-
The nonlinear PCA learning rule in independent component analysis
-
Oja, E. (1997). The nonlinear PCA learning rule in independent component analysis. Neurocomputing, 17(1), 25-46.
-
(1997)
Neurocomputing
, vol.17
, Issue.1
, pp. 25-46
-
-
Oja, E.1
-
14
-
-
0002813661
-
Nonlinear PCA criterion and maximum likelihood in independent component analysis
-
Aussois, France: ICA 1999 Organizing Committee, Institut National Polytechnique de Grenoble, Prance
-
Oja, E. (1999). Nonlinear PCA criterion and maximum likelihood in independent component analysis. In Proc. Int. Workshop on Independent Component Analysis and Signal Separation (ICA'99) (pp. 143-148). Aussois, France: ICA 1999 Organizing Committee, Institut National Polytechnique de Grenoble, Prance.
-
(1999)
Proc. Int. Workshop on Independent Component Analysis and Signal Separation (ICA'99)
, pp. 143-148
-
-
Oja, E.1
-
15
-
-
1242316846
-
Blind separation of positive sources using nonnegative ICA
-
Kyoto, Japan: ICA 2003 Organizing Committee, NTT Communication Science Laboratories
-
Oja, E., & Plumbley, M. D. (2003). Blind separation of positive sources using nonnegative ICA. In Proc. Int. Workshop on Independent Component Analysis and Signal Separation (ICA'03). Kyoto, Japan: ICA 2003 Organizing Committee, NTT Communication Science Laboratories.
-
(2003)
Proc. Int. Workshop on Independent Component Analysis and Signal Separation (ICA'03)
-
-
Oja, E.1
Plumbley, M.D.2
-
16
-
-
0028561099
-
Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values
-
Paatero, P., & Tapper, U. (1994). Positive matrix factorization: A nonnegative factor model with optimal utilization of error estimates of data values. Environmetrics, 5, 111-126.
-
(1994)
Environmetrics
, vol.5
, pp. 111-126
-
-
Paatero, P.1
Tapper, U.2
-
17
-
-
84898930340
-
Unmixing hyperspectral data
-
S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.). Cambridge, MA: MIT Press
-
Parra, L., Spence, C., Sajda, P., Ziehe, A., & Müller, K.-R. (2000). Unmixing hyperspectral data. In S. A. Solla, T. K. Leen, & K.-R. Müller (Eds.), Advances in neural information processing systems, 12 (pp. 942-948). Cambridge, MA: MIT Press.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 942-948
-
-
Parra, L.1
Spence, C.2
Sajda, P.3
Ziehe, A.4
Müller, K.-R.5
-
18
-
-
0036612776
-
Conditions for nonnegative independent component analysis
-
Plumbley, M. D. (2002). Conditions for nonnegative independent component analysis. IEEE Signal Processing Letters, 9(6), 177-180.
-
(2002)
IEEE Signal Processing Letters
, vol.9
, Issue.6
, pp. 177-180
-
-
Plumbley, M.D.1
-
19
-
-
0038460232
-
Algorithms for non-negative independent component analysis
-
Plumbley, M. D. (2003). Algorithms for non-negative independent component analysis. IEEE Transactions on Neural Networks, 14(3), 534-543.
-
(2003)
IEEE Transactions on Neural Networks
, vol.14
, Issue.3
, pp. 534-543
-
-
Plumbley, M.D.1
-
20
-
-
1242331294
-
A "non-negative PCA" algorithm for independent component analysis
-
Plumbley, M. D., & Oja, E. (2004). A "non-negative PCA" algorithm for independent component analysis. IEEE Transactions on Neural Networks, 15(1), 66-76.
-
(2004)
IEEE Transactions on Neural Networks
, vol.15
, Issue.1
, pp. 66-76
-
-
Plumbley, M.D.1
Oja, E.2
-
21
-
-
0035725021
-
Dimensionality reduction using non-negative matrix factorization for information retrieval
-
Piscataway, NJ: IEEE
-
Tsuge, S., Shishibori, M., Kuroiwa, S., & Kita, K. (2001). Dimensionality reduction using non-negative matrix factorization for information retrieval. In IEEE International Conference on Systems, Man, and Cybernetics (Vol. 2, pp. 960-965). Piscataway, NJ: IEEE.
-
(2001)
IEEE International Conference on Systems, Man, and Cybernetics
, vol.2
, pp. 960-965
-
-
Tsuge, S.1
Shishibori, M.2
Kuroiwa, S.3
Kita, K.4
-
22
-
-
0027206958
-
Least mean square error reconstruction principle for self-organizing neural-nets
-
Xu, L. (1993). Least mean square error reconstruction principle for self-organizing neural-nets. Neural Networks, 6(5), 627-648.
-
(1993)
Neural Networks
, vol.6
, Issue.5
, pp. 627-648
-
-
Xu, L.1
|